Метод вс в химии

Метод вс в химии

Метод валентных связей (МВС) описывает образование ковалентных связей в молекулах с позиций квантовой механики.

Он базируется на следующих основных положениях:

1. Химическая связь образуется за счет попарного перекрывания валентных атомных орбиталей (АО).

2. В результате перекрывания АО появляется общая для двух атомов электронная пара с антипараллельными (т.е. противоположными по знаку) спинами, которая обеспечивает одну химическую связь.

3. В ходе взаимодействия АО могут подвергаться гибридизации (при этом получаются ГАО — гибридные атомные орбитали).

По сути дела, МВС является более совершенным вариантом теории ковалентной связи. В МВС химическая связь так же может быть образована двумя способами:

1. Обменный механизм

2. Донорно-акцепторный механизм

Связи, образованные одними и теми же атомами различными способами абсолютно неотличимы друг от друга. Так, молекула водорода может быть получена как по обменному, так и по донорно-акцепторному механизмам:

МВС дает ясную и точную трактовку понятия валентности. Валентность — это число АО данного атома, принявших участие в перекрывании с АО других атомов по обменному или донорно-акцепторному механизмам.

Атомы могут образовывать связи как в нормальном (невозбужденном), так и в возбужденном состоянии. Переход атома в возбужденное состояние связан с перескоком валентных электронов с одного валентного подуровня на другой. При этом появляется дополнительное количество неспаренных электронов и увеличиваются валентные возможности атома по обменному механизму.

Пример: атом фосфора в нормальном состоянии имеет электронное строение 1s 2 2s 2 2p 6 3s 2 3p 3 или [Ne] 3s 2 3p 3 . Валентные электроны фосфора (3s 2 3p 3 ) распределены по валентным орбиталям следующим образом:

Невозбужденный атом фосфора может образовать 3 связи по обменному механизму и 1 связь по донорно-акцепторному (за счет пары электронов 3s 2 ). Поэтому такой атом фосфора может иметь валентность или III или IV.

Возбужденный атом фосфора (Р * ) может образовать 5 связей по обменному механизму, то есть его валентность равна V. И, действительно, фосфор в своих соединениях проявляет валентность III (PH3 — фосфин), IV (P — ион фосфоний), V (H3PO4 фосфорная кислота). Другие валентности для фосфора нехарактерны.

Если атомы в ходе химического взаимодействия не подвергаются гибридизации, то описание образования связей с позиций МВС осуществляется следующим образом:

а) составляется орбитальная диаграмма образования связей;

б) схематически изображается перекрывание орбиталей в пространстве.

Пример: молекула Cl2.

Данная диаграмма показывает, что в молекуле Cl2 существует одна ковалентная связь, образованная по обменному механизму. Графическая формула этой молекулы: Cl — Cl .

Пространственное строение молекулы Cl2 (изображены только 3p — орбитали):

По типу перекрывания орбиталей различаются s — связи, p — связи и d — связи.

s — cвязь образуется при “лобовом” перекрывании орбиталей, т.е. максимум перекрывания АО находится на прямой линии, соединяющей ядра атомов. s — связь самая прочная. Она может образовываться при перекрывании орбиталей любого вида:

В случае p — связи максимумы перекрывания АО находятся в 2-х областях, лежащих на плоскости, проходящей через ядра атомов:

В случае d — связи максимумы перекрывания АО находятся в 4-х областях, лежащих на 2-х взаимно перпендикулярных плоскостях, проходящих через ядра атомов. Связи такого типа могут возникать только при перекрывании d — и f — орбиталей и изучены очень мало.

Попытки применения МВС в простейшем варианте, изложенном выше для описания химического строения большинства молекул состоящих из 3 и более атомов оказались неудачными. Во многих случаях теория абсолютно не соответствовала экспериментальным данным. Для устранения этого противоречия была разработана теория гибридизации.

Гибридизация — это глубокая перестройка АО, возникающая при переходе атома из нормального в возбужденное состояние. При этом АО превращаются в ГАО (гибридные атомные орбитали). ГАО резко отличаются от исходных АО по энергии, форме и ориентации в пространстве. В то же время ГАО одного атома абсолютно одинаковы по энергии и форме между собой.

Пример : sp 3 — гибридизация атома углерода:

Все ГАО имеют форму ассиметричной гантели (т.е. вытянуты в одном направлении). Гибридизации могут подвергаться только орбитали валентных подуровней. В ходе гибридизации из n АО получаются n ГАО. ГАО участвуют в образовании только s — связей, причем эти связи более прочные, чем аналогичные s — связи с участием негибридных АО.

В настоящее время в различных веществах обнаружено около 20 различных типов гибридизации. Но чаще всего встречаются 6 типов гибридизации:

Тип гибридизации Взаимное расположение ГАО в пространстве Структурные формы
sp
sp 2
sp 3
sp 3 d 1
sp 3 d 2
spd 2

Наличие гибридизации и ее тип у того или иного атома в молекуле в общем случае предсказать нельзя.

Для однозначного решения этой задачи в большинстве случаев нужно знать:

1. Сколько связей между каждой парой атомов (первая связь — всегда s — связь, вторая и третья — p — связи).

2. Чему равны валентные углы (углы между связями) или, по крайней мере, чему равен дипольный момент молекулы (сумма дипольных моментов связей).

Пример 1 . Известно, что молекула CСl4 неполярна (½m½ = 0). Углы между связями С — Сl одинаковы и равны 109°28¢. Все связи C — Cl одинаковы по длине и энергии. Все эти данные свидетельствуют в пользу того факта, что углерод в этой молекуле находится в состоянии sp 3 — гибридизации.

Поэтому орбитальная диаграмма выглядит следующим образом:

Пространственноестроение CCl4 — атомы Cl образуют правильную фигуру (тетраэдр). Относительно возможной гибридизации атомов хлора ничего сказать нельзя, т.к. исходных данных недостаточно для этого.

Пример 2 . Молекула Н2О полярна ( çm ç ¹ 0 ), угол между связями Н-О равен 105°30¢. Водород не может подвергаться гибридизации, так как у него всего одна валентная орбиталь. Кислород может быть негибридизированным (тогда угол между связями должен быть 90°) или иметь один из 3 типов гибридизации (другие невозможны из-за отсутствия валентных d и f — орбиталей): sp — гибридизация (валентный угол 180°), sp 2 — гибридизация (120°), sp 3 — гибридизация (109°28¢).

Так как валентный угол в молекуле воды наиболее близок к таковому для случая sp 3 — гибридизации, орбитальная диаграмма этой молекулы следующая:

Валентный угол в такой молекуле отличается от стандартного тетраэдрического (109°28¢) за счет того, что ГАО кислорода неравноценны: две из них связывающие (принимают участие в образовании связей О — Н), а две – несвязывающие:

Несвязывающие атомные орбитали кислорода сильно отталкиваются друг от друга и это приводит к тому, что валентный угол в молекуле воды меньше на 5° относительно стандартного для sp 3 -гибридизации.

Пример 3 : Молекула СО2 неполярна ( çm ç = 0). Этого вполне достаточно, чтобы описать строение этой молекулы. Каждая связь С — О является полярной, так как атомы углерода и кислорода сильно отличаются по электроотрицательности. Чтобы молекула в целом была неполярной, необходимо чтобы связи С — О имели валентный угол равный 180°:

При сложении 2 векторов одинаковых по длине и противополжных по направлению получается ноль. Угол 180° соответствует sp -гибридизации атома углерода. Отсюда следует орбитальная диаграмма:

Читайте также:  Как получать смс на ipad с сим

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9373 — | 7430 — или читать все.

Метод ВС основан на следующих основных положениях:

а) химическая связь между двумя атомами возникает как результат перекрывания АО с образованием электронных пар (обобщенных двух электронов);

б) атомы, образующие химическую связь, обмениваются между собой электронами, которые образуют связывающие пары. Энергия обмена электронами между атомами (энергия притяжения атомов) вносит свой вклад в энергию химической связи. Дополнительный вклад в энергию связи дают кулоновские силы взаимодействия частиц;

в) в образовании химической связи участвуют электроны с антипараллельными спинами;

г) характеристики химической связи (энергия, длина, полярность и др.) определяется типом перекрывания АО.

Электронная структура молекулы значительно отличается от электронной структуры образующих ее атомов. Например, электронные орбитали в молекуле водорода не имеют сферической симметрии в отличие от АО атома водорода, так как электронная пара принадлежит двухцентровой молекулярной системе. В то же время эта связывающая электронная пара находится на более низком энергетическом уровне, чем неспаренные электроны атомов водорода.

В результате образования молекул из атомов изменения претерпевает лишь электронная структура внешних и предвнешних оболочек атомов. Поэтому в образовавшейся молекуле атомы с исходной электронной структурой не существуют. У атомов в молекуле сохраняются лишь электронные конфигурации внутренних электронных оболочек, не перекрывающихся при образовании связей.

Способность атома присоединять или замещать определенное число других атомов с образованием химических связей называется валентностью. Согласно методу ВС, каждый атом отдает на образование общей электронной пары (ковалентной связи) по одному неспаренному электрону. Количественной мерой валентности в обменном механизме метода ВС является число неспаренных электронов у атома в основном или возбужденном состоянии. К ним относятся неспаренные электроны внешних оболочек атомов s- и р-элементов, внешних и предвнешних оболочек d-элементов.

При образовании химической связи атом может переходить в возбужденное состояние в результате разъединения пары или пар электронов и переходе одного (или нескольких электронов, равных числу разъединенных пар) на свободную орбиталь той же оболочки. Например, электронная конфигурация кальция в основном состоянии записывается как 4s 2 . В соответствии с обменным механизмом метода ВС валентность его равна нулю, т.е. для Са (…4s 2 ) валентностьВ=0. У атома кальция в четвертой оболочке (п=4) имеются вакантные р-орбитали. При возбуждении атома происходит распаривание электронов и один из 4s-электронов переходит на свободную 4s-орбиталь. Валентность кальция в возбужденном состоянии равна двум, т.е. при распаривании валентность увеличивается на две единицы.

4s 4p 4s 4p
Ca ↑↓ Ca* B*=2

В отличие от кислорода и фтора, электронные пары которых не могут разъединяться, т.к. на втором уровне нет других вакантных орбиталей, электронные пары серы и хлора могут распариваться, т.к. на третьем уровне есть вакантные 3d-орбитали. Соответственно сера, кроме валентности основного состояния I и II,

3s 3p 3d
↑↓ ↑↓

имеет еще валентности IV и VI в возбужденных состояниях:

3s 3p 3d
↑↓

Пространственная структура молекул.

Как было показано ранее, ковалентная химическая связь характеризуется направленностью, что обусловлено определенными ориентациями АО в пространстве.

Связь, образованная перекрыванием АО по линии, соединяющей ядра соединяющихся атомов, называется σ-связью. Примерами образования σ-связей являются перекрывания s-орбиталей, s- и p-орбиталей, р-орбиталей, d-орбиталей, а также d- и s-орбиталей, d- и р-орбиталей и т.д. Некоторые из примеров σ-связей приведены ниже.

Можно видеть, что в случае σ-связей область максимальной электронной плотности находится на линии, соединяющей ядра атомов.

Связь, образованная перекрыванием АО по обе стороны от линии, соединяющей ядра атомов (боковое перекрывание), называется π-связью. π-связь может образоваться при перекрывании р-р, р-d, f-p, f-d и f-f-орбиталей. Ниже приведены примеры образования π-связей.

Поскольку при образовании π-связей степень перекрывания орбиталей невелика по сравнению с σ-связями, энергия этих связей существенно ниже.

При наложении π-связи на σ-связь образуется двойная связь, например, в молекулах кислорода, этилена, диоксида углерода:

О=О , С=С , О=С=О.

При наложении двух π-связей на одну σ-связь возникает тройная связь, например, в молекулах азота, ацетилена, синильной кислоты:

, , .

Чем выше кратность связи, тем больше ее энергия и тем меньше длина связи.

Некоторые формы соединений невозможно объяснить с точки зрения их образования из возбужденных или невозбужденных атомов. Так, в молекуле метана все связи С-Н равноценны, что противоречит набору орбиталей у возбужденных и невозбужденных форм атома углерода. Последовательное обоснование этого и других фактов найдено в рамках концепции гибридизации АО.

Гибридизация — это смешение различных по энергии и форме орбиталей атома, приводящие к образованию такого же количества одинаковых по энергии и форме гибридных орбиталей. Эквивалентность гибридных орбиталей обусловливает не только образование равноценных по энергии связей, но и одинаковые валентные углы между связями, образуемыми этими орбиталями. Следует подчеркнуть, что гибридные АО образуются у одного атома, имеющего разные орбитали, причем объектом гибридизации являются орбитали, имеющие близкие значения энергии.

В случае метана гибридизация является результатом смешения одной s- и трех р-орбиталей в возбужденном состоянии атома углерода, так называемая sp 3 -гибридизация.

sp 3

2p 2p
2s 2s
↑↓

Образование гибридных орбиталей обусловливает энергетическую выгодность образующихся посредством этих орбиталей химических соединений. Это связано с двумя факторами.

Во-первых, гибридные орбитали ассимметричны, что обусловливает большую степень перекрывания при образовании ими химических связей и большую их прочность.

Во-вторых, валентные углы между гибридными орбиталями больше, чем негибридными, что обусловливает меньшую степень отталкивания между электронами связей, образуемых этими орбиталями, и делает молекулярные системы более стабильными.

При sp 3 -гибридизации продольные оси симметрии гибридных орбиталей находятся по отношению друг к другу под углом 109º28′ – соответствующих их направлению к углам тетраэдра, центром которого является ядро атома.

Если объектами гибридизации является одна s и две р-орбитали, то такой тип гибридизации называется sp 2 — гибридизация, а углы между продольными осями этих орбиталей равны 120ºС и соответствуют минимальному отталкиванию между валентными электронами.

При смешении одной s- и одной р-орбитали имеет место sp-гибридизация. В этом случае валентный угол между гибридными орбиталями составляет 180˚ С.

Пространственная структура молекул определяется числом атомов в молекуле, гибридизацией орбиталей и числом неспаренных электронов на них, ответственных за образование связей.

Молекула, образованная двумя атомами, линейна. Если на внешней оболочке атома имеется два неспаренных р-электрона, то при перекрывании их АО орбиталями других атомов, образуется угловые молекулы. К таким атомам относятся атомы р-элементов VI группы (O, S, Se, Te), электронная конфигурация внешних оболочек которых приведена ниже.

ns np
↑↓ ↑↓

Две р-орбитали с неспаренными электронами расположены перпендикулярно друг к другу, поэтому угол в молекулах H2S, H2Se и H2Te близок к 90˚. Вследствие отталкивания электронов валентный угол между связями в молекуле H2S несколько выше 90˚. У молекул воды угол между связями значительно больше и равен 105˚. Такую структуру можно объяснить, если принять, что это происходит sp 2 гибридизация АО кислорода при образовании воды. При этом две гибридные орбитали перекрываются s-орбиталями водорода. Отталкивание валентных электронов связей Н-О от неподеленных пар электронов кислорода обусловливает уменьшение валентного угла от 120 о до 105˚.

Читайте также:  Сколько заряжать аккумуляторные батарейки gp 2100

Образование молекул аммиака можно представить через sp 3 -гибридизацию невозбужденного атома азота.

2p
2s ↑↓
↑↓

невоздужденное sp 3 -гибридизация

Три орбитали с неспаренными электронами образуют химические связи с атомами водорода, давая пирамидальную структуру, а оставшаяся неподеленная электронная пара азота, отталкивая от себя валентные электроны, понижает валентные углы с тетраэдрических (109˚28′) до 108º.

Дата добавления: 2015-10-05 ; просмотров: 1861 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

МЕТОД ВАЛЕНТНЫХ СВЯЗЕЙ

Эволюция метода валентных связей

Впервые приближенное решение уравнения Шредингера для одной из простейших молекул — молекулы водорода было произведено в 1927 г. В. Гейтлером и Ф. Лондоном. Эти авторы сначала рассмотрели систему из двух атомов водорода, находящихся на большом расстоянии друг от друга. При этом условии можно учитывать только взаимодействие каждого электрона со «своим» ядром, а всеми остальными взаимодействиями (взаимное отталкивание ядер, притяжение каждого электрона к «чужому» ядру, взаимодействие между электронами) можно пренебречь. Тогда оказывается возможным выразить зависимость волновой функции рассматриваемой системы от координат и тем самым определить плотность общего электронного облака (электронную плотность) в любой точке пространства.

Далее Гейтлер и Лондон предположили, что найденная ими зависимость волновой функции от координат сохраняется и при сближении атомов водорода. При этом, однако, необходимо уже учитывать и те взаимодействия (между ядрами, между электронами и т. д.), которыми при значительном удалении атомов друг от друга можно было пренебрегать. Эти дополнительные взаимодействия рассматриваются как некоторые поправки («возмущения») к исходному состоянию электронов в свободных атомах водорода.

В результате были получены уравнения, позволяющие найти зависимость потенциальной энергии Е системы, состоящей из двух атомов водорода, от расстояния r между ядрами этих атомов. При этом оказалось, что результаты расчета зависят от того, одинаковы или противоположны по знаку спины взаимодействующих электронов. При совпадающем направлении спинов сближение атомов приводит к непрерывному возрастанию энергии системы. В последнем случае для сближения атомов требуется затрата энергии, так что такой процесс оказывается энергетически невыгодным и химическая связь между атомами не возникает. При противоположно направленных спинах сближение атомов до некоторого расстояния го сопровождается уменьшением энергии системы. При r = r система обладает наименьшей потенциальной энергией, т.е. находится в наиболее устойчивом состоянии; дальнейшее сближение атомов вновь приводит к возрастанию энергии. Но это и означает, что в случае противоположно направленных спинов электронов образуется молекула Н2 — устойчивая система из двух атомов водорода, находящихся на определенном расстоянии друг от друга.

Образование химической связи между атомами водорода является результатом взаимопроникновения («перекрывания») электронных облаков, происходящего при сближении взаимодействующих атомов. Вследствие такого взаимопроникновения плотность отрицательного электрического заряда в межъядерном пространстве возрастает. Положительно заряженные ядра атомов притягиваются к области перекрывания электронных облаков. Это притяжение преобладает над взаимным отталкиванием одноименно заряженных электронов, так что в результате образуется устойчивая молекула.

Таким образом, проведенное исследование позволило сделать вывод, что химическая связь в молекуле водорода осуществляется путем образования пары электронов с противоположно направленными спинами, принадлежащей обоим атомам. Разработанная на этой основе теория химической связи и для более сложных молекул получила название метода валентных связей. Важным положением является то, что всякий раз, когда химическая связь образуется, спины пары электронов должны быть антипараллельными. Это находится в соответствии с принципом Паули и подчеркивает, что при образовании химической связи электроны переходят в новое квантовое состояние.

Наличие спаренных электронов является «индикатором» наличия химической связи, но не причиной ее образования. Изучение причины образования химической связи к настоящему времени показало, что энергия системы из двух атомов понижается тогда, когда электроны с большей вероятностью находятся в межъядерном пространстве (как бы «задерживаются» в этой области). Такая задержка приводит к понижению их кинетической энергии, в результате отрицательная составляющая полной энергии молекулы преобладает, молекула становится устойчивой или, как говорят, образуется химическая связь.

Метод валентных связей дал теоретическое объяснение важнейших свойств ковалентной связи, позволил понять строение большого числа молекул. Хотя этот метод не оказался универсальным и в ряде случаев не в состоянии правильно описать структуру и свойства молекул, все же он сыграл большую роль в разработке квантово-механической теории химической связи и не потерял своего значения до настоящего времени в качественном понимании природы химической связи.

Основные положения метода валентных связей

Метод валентных связей описывает механизм возникновения ковалентной связи и базируется на следующих основных принципах:

  1. Химическая связь между двумя атомами осуществляется за счет одной или нескольких общих электронных пар.

Оба электрона общей электронной пары удерживаются одновременно двумя ядрами, что энергетически более выгодно, чем нахождение каждого электрона в поле «своего» ядра.

Такая химическая связь является двухцентровой.

    При образовании общей электронной пары электронные облака перекрываются; область повышенной электронной плотности между ядрами способствует их притяжению. Чем сильнее перекрывание электронных облаков (соотношение R1 и R2), тем прочнее химическая связь.

Например, изобразим образование молекулы F2 с помощью квантовых ячеек внешнего энергетического уровня (электронная формула атома F: 1s 2 2s 2 2p 5 ):

Спаренные электроны внешнего уровня атома для образования химических связей с другими атомами должны разъединяться (распариваться). Атом перейдет в новое валентное состояние. Затрата энергии на такой процесс возбуждения атома компенсируется энергией, выделяющейся при образовании химической связи (следует помнить, что возможности возбуждения атомов ограничены числом свободных орбиталей в соответствующих энергетических подуровнях).

  1. Ковалентная связь обладает свойством насыщаемости, вследствие чего молекулы имеют вполне определенный состав.

Например, при образовании молекулы метана СН4 каждый из четырех неспаренных электронов возбужденного атома углерода соединился с электроном атома водорода, образовались 4 ковалентные связи; больше электронных пар в данном случае образоваться не может, молекулы СН5, СН6 и т.д. не существуют.

(Примечание: взаимодействие валентнонасыщенных соединений между собой возможно с образованием одной или нескольких дополнительных донорно-акцепторных связей по особому механизму).

  1. Ковалентная связь направлена в пространстве, что обусловливает пространственную структуру молекул (свойство направленности).

В зависимости от того, какими электронами осуществляются связи — s-, р-, d- или f-электронами, существенно различны энергии связей, длины связей, а также их направление в пространстве.

Электронные облака имеют различную форму, поэтому их взаимное перекрывание осуществляется несколькими способами: различают σ- (сигма), π- (пи) и δ (дельта)-связи.

Если перекрывание электронных облаков происходит вдоль линии, соединяющей ядра — это σ-связь; если облака перекрываются вне этой линии, возникают π- и δ-связи.

Читайте также:  Конвертация кода карты rfid

Если между атомами возникла одна общая электронная пара (обычно σ-связь), такая связь называется одинарной, если две и более, то кратной: двойной, тройной.

Например, образование молекулы азота N2 осуществляется тремя общими электронными парами. У каждого атома азота в образовании связей участвует 3 неспаренных р-электрона, направленных в трехмерном пространстве под углом 90 0 друг к другу и ориентированных соответственно по осям х, у, z (таковы свойства р-подуровня и р-орбиталей, диктуемые магнитным квантовым числом).

Два атома азота, соединяясь в молекулу N2, могут образовать одну σ-связь (перекрываются облака, ориентированные вдоль оси х) и две π-связи (перекрываются облака, ориентированные вдоль осей у и z).

Гибридизация атомных орбиталей

Cтруктура молекул зависит прежде всего от вида и свойств тех орбиталей, которые атомы предоставляют для образования химических связей. Но, помимо этого фактора, на пространственное строение молекул влияет явление гибридизации орбиталей.

называется образование новых равноценных по форме и энергии орбиталей из орбиталей разного типа. Смешанные, гибридные орбитали на схемах изображают условно:

sp-гибридизация

Из одной s-орбитали и одной р-орбитали образуются две гибридные, смешанные орбитали sp-типа, направленные по отношению друг к другу на 180°.

Например: линейную форму имеют молекулы ВеН2 и SnCl2 с sp-гибридизацией атома бериллия и олова соответсвенно.

sp 2 -гибридизация

Из одной s-орбитали и двух р-орбиталей образуются три sp 2 -гибридные орбитали, расположенные в одной плоскости под углом 120° друг к другу.

Взаимная ориентация трех sp 2 -гибридных орбиталей — тригональная. Концепцию sp 2 -гибридизации применяют для описания плоских молекул тригональной формы.

Например: молекула фторида алюминия A1F3. Возбуждение атома алюминия сопровождается распариванием s 2 -электронов внешнего уровня на p-подуровень. Следовательно, электронная конфигурация внешнего уровня атома алюминия в возбужденном состоянии — 3s 1 3p 2 . Заселенные электронами орбитали атома алюминия гибридизируются и ориентируются в одной плоскости под углом 120° друг к другу. Каждое из трех электронных облаков гибридных sp 2 -орбиталей перекрывается с электронными облаками p-орбиталей трех атомов фтора.

sp 3 -гибридизация

sp 3 -гибридизация имеет место, если объединяются одна s-орбиталь и три р-орбитали; образуются четыре sp 3 -гибридные орбитали, ориентированные уже не в одной плоскости, а в объеме тетраэдра и направленные от центра тетраэдра к его 4 вершинам; валентный угол между двумя химическими связями составляет 109°28′.

Например: строение молекулы метана СН4. Атом углерода в возбужденном состоянии имеет четыре неспаренных электрона: один s- и три р-электрона. Казалось бы, четыре химические связи, образованные ими с s-электронами четырех атомов водорода, должны быть неравноценными. Однако экспериментально установлено, что все 4 связи в молекуле СН4 совершенно идентичны по длине и энергии, а углы между связями составляют 109°28′. Следовательно, в молекуле СН4 имеет место sp 3 -гибридизация.

Возможны более сложные случаи гибридизации с участием d-электронов, (например, sp 3 d 2 — гибридизация).

Явление гибридизации, т.е. смешения, выравнивания электронной плотности, энергетически выгодно для атома, поскольку у гибридных орбиталей происходит более глубокое перекрывание и образуются более прочные химические связи. Небольшие затраты энергии на возбуждение атома и гибридизацию орбиталей с избытком компенсируются энергией, выделяющейся при возникновении химических связей. Валентные углы диктуются соображениями максимальной симметрии и устойчивости.

На гибридных орбиталях, как и на обычных орбиталях, может располагаться не только по одному электрону, но и по два. Например, четыре sp 3 -гибридные орбитали атома кислорода О таковы, что две из них содержат по паре электронов, а две — одному неспаренному электрону. С современных позиций строение молекулы воды рассматривается с учетом гибридизации орбиталей атома О и тетраэдрической структуры молекулы Н2O в целом.

Валентность по обменному механизму метода

Способность атома присоединять или замещать определенное число других атомов с образованием химических связей называется . Согласно обменному механизму метода валентных связей каждый атом отдает на образование общей электронной пары (ковалентной связи) по одному неспаренному электрону. Количественной мерой валентности в обменном механизме метода валентных связей считают число неспаренных электронов у атома в основном или возбужденном состоянии атома. Это неспаренные электроны внешних оболочек у s- и p-элементов, внешних и предвнешних оболочек у d-элементов, внешних, предвнешних и предпредвнешних оболочек у f-элементов.

При образовании химической связи атом может переходить в возбужденное состояние в результате разъединения пары (или пар) электронов и переходе одного электрона (или нескольких электронов, равных числу разъединенных пар) в свободную орбиталь той же оболочки.

Например: электронная конфигурация кальция в основном состоянии записывается как:

В соответствии с обменным механизмом метода валентных связей валентность его равна нулю В=0. У атома кальция в четвертой оболочке (n=4) имеются вакантные р-орбитали. При возбуждении атома происходит распаривание электронов и один из 4s-электронов переходит в свободную -орбиталь. Валентность кальция в возбужденном состоянии равна двум, т.е. при распаривании валентность увеличивается на две единицы:

В отличие от кислорода и фтора, электронные пары которых не могут разъединяться, так как во второй оболочке нет вакантных орбиталей, электронные пары атомов серы и хлора могут распариваться в вакантные орбитали 3d-подоболочки, соответственно сера кроме валентности основного состояния 1 и 2 , имеет еще валентности 4 и 6 в возбужденном состоянии, а хлор кроме валентности 1 в основном состоянии, имеет валентности 3, 5 и 7 в возбужденном состоянии.

Элемент Основное состояние Возбужденное состояние
Электронная
конфигурация
Заполнение орбиталей Валентность Электронная
конфигурация
Заполнение орбиталей Валентность
s p d s p d
Водород 1s 1 1
Гелий 1s 2
Бериллий 2s 2 2s 1 2p 1 2
Углерод 2s 2 2p 2 1,2 2s 1 2p 3 1,2,4
Кислород 2s 2 2p 4 1,2
Фтор 2s 2 2p 5 1
Сера 3s 2 3p 4 1,2 3s 1 3p 3 3d 2 1,2,4,6
Хлор 3s 2 3p 5 1 3s 1 3p 3 3d 3 1,3,5,7

У атомов большинства d- и f-элементов на внешних оболочках в основном состоянии нет неспаренных электронов, поэтому их валентность в основном состоянии равна нулю, несмотря на то, что на предвнешних d- и f-подоболочках имеются неспаренные электроны. Последние не могут образовывать электронные пары с электронами других атомов, так как закрыты электронами внешней оболочки. При возбуждении атома распаренные электроны внешней оболочки вступают в химическую связь и открывают внутренние электронные оболочки.

Например: валентность железа в основном состоянии равна нулю:

В возбужденном состоянии происходит разъединение 4s-пары электронов:

Валентность железа в возбужденном состоянии определяется не только 4s-, 4p-, но и 3d-неспаренными электронами. Однако пара 3d-электронов не может разъединиться, потому что в третьей оболочке нет вакантных орбиталей, поэтому максимальная валентность железа равна шести.

У осмия при возбуждении могут разъединяться не только внешние 6s-электроны, но и предвнешние 5d-электроны, поскольку в пятой оболочке имеется еще 5f-подоболочка со свободными орбиталями, поэтому максимальная валентность осмия равна восьми:

Ссылка на основную публикацию
Маршрутизатор доступа гарда 10g
Флагманский продукт компании ПАО "Институт Сетевых Технологий", поставляется в основном на заказы Минобороны, силовых ведомств и государственных структур, в информационных...
Кто проводит учет карт в опс
Об актуальных изменениях в КС узнаете, став участником программы, разработанной совместно с ЗАО "Сбербанк-АСТ". Слушателям, успешно освоившим программу выдаются удостоверения...
Макросы на мышку gembird
Первым делом перемещаем наши макросы в корень программы Способ 1: Перейдите в: директорию программы MacroLibrary и переместите туда макрос формата...
Метод выделения линейных множителей в определителе
Вычислить определитель:. Заметив, что элементы первого столбца представлены как суммы двух чисел, разложим определитель в сумму двух определителей: . Теперь...
Adblock detector