Hl2613 в светодиодной лампе что это

Hl2613 в светодиодной лампе что это

В мои руки попало несколько вышедших из строя, уже широко распространённых светодиодных ламп на напряжение 230 В, в изобилии предлагаемых в наших магазинах. Захотелось выяснить причину их быстрого выхода из строя и внутреннее устройство. Все лампы проработали не более одного года, хотя на упаковках утверждается, что их время непрерывной работы 30000 ч, получается 1250 суток, что составляет более трёх лет. И ведь наверняка сгоревшие лампы не эксплуатировались круглые сутки.

Итак, берём первую лампу под товарным знаком iEK. Кроме товарного знака, на корпусе указаны данные и параметры лампы LED-A60, 230 В, 50/60 Гц, 11 Вт, 4000 К. Как известно, большинство сетевых светодиодных ламп имеют примерно одинаковую конструкцию. К несущему корпусу, в котором расположены драйвер и светодиоды, крепится матовая колба светорассеивателя и металлический резьбовой цоколь лампы. Пробуем сначала снять колбу. Для этого я изготовил тонкий узкий нож из обломка полотна от ножовки по металлу, сделав тонкое остриё на наждачном станке. Осторожно вставляем нож между колбой и корпусом, сначала на небольшую глубину, и проходим по ругу. Далее всё повторяем на большей глубине. При этом можно пробовать покачивать колбу лампы, и когда колба будет покачиваться, отделяем её. Оказалось, что колба крепилась с помощью белого силиконового герметика. При этом следует отметить, что у некоторых ламп колба отделялась сравнительнолегко, а у некоторых — трудно. У одной лампы в герметике осталась часть нижнего пояска колбы. Но главное — соблюдать осторожность, тогда всё должно получиться.

На алюминиевой печатной плате, служащей ещё и теплоотводом, припаяны 12 светодиодов поверхностного монтажа белого свечения типоразмера 3528. Один из светодиодов был с чёрной точкой, как оказалось — сгоревший. Алюминиевая подложка плотно вставлена в корпус, оказавшийся внутри также алюминиевым, поверх покрытым пластиком. Корпус тоже должен выполнять функцию теплоотвода, но площадь соприкосновения тонкой алюминиевой платы корпусом невелика, атеп-лопроводящая паста отсутствует. Плата со светодиодами подпаяна к драйверу двумя проводами. Внешний вид разобранной лампы изображён на рис. 1. Удалив герметик, поддевают ножом и извлекают плату со светодиодами, но вынуть её из корпуса не дают провода, соединяющие драйвер с цоколем лампы. Поддев ножом, извлекают центральный контакт цоколя и разгибают идущий к нему провод. Места кернения резьбовой части цоколя к корпусу высверливаем сверлом диаметром 1,5 мм. Сняв цоколь, можно достать плату драйвера. На ней оказался разрушен оксидный конденсатор с обозначением на плате Е2. Часть элементов на плате для поверхностного монтажа установлена со стороны печатных проводников, а на противоположной стороне установлены дроссель, два оксидных конденсатора и микросхема. Схема драйвера с обозначениями элементов, как на плате, показана на рис. 2. Резистор, условно обозначенный как R1, находится не на плате, а соединяет центральный контакт цоколя лампы с ней. Схема драйвера построена на микросхеме OCP8191 в корпусе ТО-92. Микросхема представляет собой неизолированный квазирезонансный понижающий преобразователь для питания светодиодов со стабилизацией тока. В её состав входят MOSFET транзистор с максимальным напряжением сток-исток 550 В и узел управления. В микросхеме есть различные виды защиты: от перегрева, от короткого замыкания в нагрузке, от превышения максимального тока. Ток через светодиоды задают резисторами RS1 и RS2.

Рис. 1. Внешний вид разобранной лампы

Рис. 2. Схема драйвера

После замены конденсатора Е2 на исправный ёмкостью 2,2 мкФ на напряжение 400 В и замыкании контактов сгоревшего светодиода лампа заработала. Был замерен ток через светодиоды, он оказался равен 120 мА, что мне кажется несколько завышенным. Ёмкость конденсатора С3 и индуктивность дросселя были замерены на плате. Применённые светодиоды начинают слабо светить при напряжении 7 В, а при напряжении 8 В и токе 2 мА светят уже ярко. Судя по этому, в одном корпусе расположены два или три последовательно включённых кристалла. Тип светодиодов остался неизвестен.

Следующей "подопытной" стала лампа под торговой маркой General. На ней нанесены следующие обозначения: GLDEN-WA60; 11 Bт; 2700 K, 198-264 B; 50/60 Гц; 73 мА. Матовый светорассеиватель снимают, как и у предыдущей лампы. После этого увидим алюминиевую плату с расположенными на ней семью SMD-светодиодами типоразмера 3528. В отличие от предыдущей лампы, плата припаяна к драйверу и закреплена двумя винтами (рис. 3). Сняв её, увидим, что она была закреплена с помощью винтов на алюминиевом штампованном диске, плотно вставленном в корпус лампы (рис. 4). Заметно, что лампа сделана более качественно, и отвод тепла от светодиодов должен быть лучше.

Рис. 3. Лампа под торговой маркой General

Рис. 4. Диск лампы

Далее аналогично снимаем цоколь. А вот диск приходится потихоньку выбивать со стороны цоколя, просунув тонкий металлический стержень и уперев его ближе к краю, в ребро диска. Иначе диск будет выгибаться. Только после этого вынимаем плату драйвера. Он построен на аналогичной микросхеме BP9916C в корпусе SOP-8 и представляет собой также неизолированный понижающий преобразователь, позволяющий поддерживать постоянным ток через светодиоды. Схема отличается от предыдущей незначительно, в основном номиналами элементов и их обозначениями на плате, и ещё тем, что после резистора R1, параллельно диодному мосту, установлен керамический конденсатор ёмкостью 0,1 мкФ на напряжение 400 В. Поэтому приводить схему не имеет смысла. Микросхема установлена со стороны печатных проводников. Замкнув контакты неисправного светодиода, удалось восстановить работоспособность лампы. При сопротивлении регулировочных резисторов RS1 и RS2, равных 5,6 и 3,9 Ом, ток через светодиоды равен 130 мА.

Потом была вскрыта светодиодная лампа с товарным знаком ASD и с обозначениями на корпусе: LED-A60, 11 Вт, 220 В, 4000 К, 990 лм. Разборка лампы такая же, как и в предыдущих случаях. Вид лампы без матового светорассеивателя показан на рис. 5. На алюминиевой плате, которая просто вставлена в корпус, установлены 18 SMD-светодиодов типоразмера 3528. Площадь теплового контакта с корпусом, как и в первой лампе, очень мала. Плата со светодиодами припаяна непосредственно к плате драйвера. Эти светодиоды, как и в предыдущих лампах, начинают светить при напряжении 7 В, а при 8 В светятся достаточно ярко при токе 2 мА. Следовательно, их параметры должны быть схожими. Драйвер этой лампы построен на микросхеме BP9918C в миниатюрном корпусе для поверхностного монтажа SOT23-3. Эта микросхема аналогична микросхемам в предыдущих лампах и обладает схожими параметрами. Схема драйвера отличается отсутствием резистора R1, вместо которого на плате сделан тонкий змеевидный печатный проводник, а также номиналами некоторых элементов и обозначениями на плате. При сопротивлении резисторов RS1 и RS2, равных соответственно 13 и 10 Ом, ток через светодиоды — 55 мА, что примерно вдвое меньше, чем у предыдущих ламп.

Рис. 5. Вид лампы без матового светорассеивателя

Исходя из всего изложенного, напрашивается вывод, что причиной быстрого выхода из строя этих ламп является завышенный ток светодиодов и недостаточное их охлаждение и, следовательно, перегрев.

Было решено восстановить эти лампы, при этом постараться продлить срок их службы. Для начала были уменьшены токи светодиодов. В первой лампе — путём замены резисторов RS1 и RS2 (4,7 и 3,9 Ом) на два резистора сопротивлением по 10 Ом каждый. Ток через светодиоды со 120 мА уменьшился до 50 мА. Во второй лампе резистор сопротивлением 3,9 Ом был заменён резистором сопротивлением 10 Ом. Ток через светодиоды уменьшился с 130 до 85 мА. В третьей лампе взамен резистора сопротивлением 13 Ом установлен резистор сопротивлением 30 Ом. Ток через светодиоды при этом уменьшился с 50 до 40 мА. Светоотдача при этом упала незначительно, хотя всё по местам может расставить только дальнейшая опытная эксплуатация.

Кроме того, у первой и третьей ламп под светодиодами, на свободной стороне платы, были подложены толстые металлические шайбы, улучшающие тепловой контакт с корпусом. Везде была нанесена теплопроводная паста КПТ-8. Металлические цоколи ламп были приклеены к корпусу эпоксидным клеем, нанесённым в места высверленных отверстий. В корпусе, рядом с цоколем лампы, были просверлены вентиляционные отверстия, улучшающие охлаждение. Правда, при этом применять лампы во влажных помещениях будет нельзя. Если лампы планируется применять в закрытых светильниках, светорассеивающие колбы можно не устанавливать, соблюдая осторожность при установке самих ламп. В противном случае колбы приклеивают белым силиконовым герметиком, как было до этого. Посмотрим, как эти доработки повлияют на долговечность ламп.

Читайте также:  Как вернуть в вайбере статус в сети

И в заключение рассмотрим совершенно другую светодиодную лампу, ещё не бывшую в эксплуатации. Это лампа торговой марки ASD, предназначенная для подключения к переменно-му или постоянному напряжению 12 В. На корпус нанесены следующие обозначения: LED-JC, 5 ВТ, AC/DC, 12 В, цоколь G4, 3000 К. Эта небольшая лампа разбирается несложно. Снимают прозрачный пластиковый колпак, закрывающий светодиоды. Он крепится к корпусу на защёлках, которые очень хрупкие. Поэтому отгибать надо не сами защёлки, а часть корпуса колпака, к которому эти защёлки прикреплены. Для этого в корпусе колпака сделаны прорези, сразу не бросающиеся в глаза, но позволяющие поддеть отвёрткой и раздвинуть защёлки. Сняв колпачок, видно, что светодиоды и другие элементы установлены на гибкой печатной плате, которая с внутренней стороны покрыта слоем липкой ленты, поэтому просто снимают её.

Далее вынимают гибкую плату и отпаивают провода, соединяющие её с цоколем. После этого можно подробно рассмотреть конструкцию лампы. Её внешний вид показан на рис. 6. Материал её корпуса похож на керамику, видимо, чтобы не оплавился при нагреве светодиодов и, возможно, хоть как-то отводил тепло от них. Материал — довольно хрупкий, легко скалывается.

Рис. 6. Конструкция лампы

Схема драйвера этой лампы представлена на рис. 7. Он собран на микросхеме U1 в корпусе SOP 8. К сожалению, однозначно идентифицировать микросхему не удалось. На разных лампах неизменной была надпись на корпусе 1086. Светодиоды в лампе типоразмера 3528, с номинальным напряжением 3,4 В. Все остальные элементы — для поверхностного монтажа. При подключении к источнику напряжением 12 В выяснилось, что лампа потребляет ток 280 мА. При увеличении напряжения до 14 В ток через лампу возрос до 290 мА, а при снижении напряжения питания до 10,2 В он уменьшился до 270 мА.

Рис. 7. Схема драйвера

При питании лампы номинальным напряжением 12 В уже после семи минут работы, при касании корпуса или светодиодов пальцем, трудно удержать его на них — обжигает. Причина — в слишком плотном расположении светодиодов и в небольшом корпусе. Ручаться после этого в продолжительной работе этой лампы я бы не стал, если только не переделать лампу, снабдив светодиоды и драйвер дополнительными теплоотводами.

Автор: П. Юдин, г. Уфа

Мнения читателей
  • Юрий / 29.09.2019 — 19:46
    Небольшая, но информативная статья. Кропотливая работа исследователя поможет многим людям. Автор молодец!
  • Валерий / 02.03.2019 — 16:52
    Большое спасибо! Познавательно! Как раз сгорела лампа, как показана в 1-ом варианте, стал разбираться, наткнулся на данную статью. Теперь все ясно, не нужно хоть самому разбираться со схемой. Спасибо автору.
  • Паньшин Андрей / 03.02.2019 — 20:59
    Интересная статья. Какой тип драйвера U1 на оис. 7.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

В мои руки попало несколько вышедших из строя, уже широко распространённых светодиодных ламп на напряжение 230 В, в изобилии предлагаемых в наших магазинах. Захотелось выяснить причину их быстрого выхода из строя и внутреннее устройство. Все лампы проработали не более одного года, хотя на упаковках утверждается, что их время непрерывной работы 30000 ч, получается 1250 суток, что составляет более трёх лет. И ведь наверняка сгоревшие лампы не эксплуатировались круглые сутки.

Итак, берём первую лампу под товарным знаком iEK. Кроме товарного знака, на корпусе указаны данные и параметры лампы LED-A60, 230 В, 50/60 Гц, 11 Вт, 4000 К. Как известно, большинство сетевых светодиодных ламп имеют примерно одинаковую конструкцию. К несущему корпусу, в котором расположены драйвер и светодиоды, крепится матовая колба светорассеивателя и металлический резьбовой цоколь лампы. Пробуем сначала снять колбу. Для этого я изготовил тонкий узкий нож из обломка полотна от ножовки по металлу, сделав тонкое остриё на наждачном станке. Осторожно вставляем нож между колбой и корпусом, сначала на небольшую глубину, и проходим по ругу. Далее всё повторяем на большей глубине. При этом можно пробовать покачивать колбу лампы, и когда колба будет покачиваться, отделяем её. Оказалось, что колба крепилась с помощью белого силиконового герметика. При этом следует отметить, что у некоторых ламп колба отделялась сравнительнолегко, а у некоторых — трудно. У одной лампы в герметике осталась часть нижнего пояска колбы. Но главное — соблюдать осторожность, тогда всё должно получиться.

На алюминиевой печатной плате, служащей ещё и теплоотводом, припаяны 12 светодиодов поверхностного монтажа белого свечения типоразмера 3528. Один из светодиодов был с чёрной точкой, как оказалось — сгоревший. Алюминиевая подложка плотно вставлена в корпус, оказавшийся внутри также алюминиевым, поверх покрытым пластиком. Корпус тоже должен выполнять функцию теплоотвода, но площадь соприкосновения тонкой алюминиевой платы корпусом невелика, атеп-лопроводящая паста отсутствует. Плата со светодиодами подпаяна к драйверу двумя проводами. Внешний вид разобранной лампы изображён на рис. 1. Удалив герметик, поддевают ножом и извлекают плату со светодиодами, но вынуть её из корпуса не дают провода, соединяющие драйвер с цоколем лампы. Поддев ножом, извлекают центральный контакт цоколя и разгибают идущий к нему провод. Места кернения резьбовой части цоколя к корпусу высверливаем сверлом диаметром 1,5 мм. Сняв цоколь, можно достать плату драйвера. На ней оказался разрушен оксидный конденсатор с обозначением на плате Е2. Часть элементов на плате для поверхностного монтажа установлена со стороны печатных проводников, а на противоположной стороне установлены дроссель, два оксидных конденсатора и микросхема. Схема драйвера с обозначениями элементов, как на плате, показана на рис. 2. Резистор, условно обозначенный как R1, находится не на плате, а соединяет центральный контакт цоколя лампы с ней. Схема драйвера построена на микросхеме OCP8191 в корпусе ТО-92. Микросхема представляет собой неизолированный квазирезонансный понижающий преобразователь для питания светодиодов со стабилизацией тока. В её состав входят MOSFET транзистор с максимальным напряжением сток-исток 550 В и узел управления. В микросхеме есть различные виды защиты: от перегрева, от короткого замыкания в нагрузке, от превышения максимального тока. Ток через светодиоды задают резисторами RS1 и RS2.

Рис. 1. Внешний вид разобранной лампы

Рис. 2. Схема драйвера

После замены конденсатора Е2 на исправный ёмкостью 2,2 мкФ на напряжение 400 В и замыкании контактов сгоревшего светодиода лампа заработала. Был замерен ток через светодиоды, он оказался равен 120 мА, что мне кажется несколько завышенным. Ёмкость конденсатора С3 и индуктивность дросселя были замерены на плате. Применённые светодиоды начинают слабо светить при напряжении 7 В, а при напряжении 8 В и токе 2 мА светят уже ярко. Судя по этому, в одном корпусе расположены два или три последовательно включённых кристалла. Тип светодиодов остался неизвестен.

Следующей "подопытной" стала лампа под торговой маркой General. На ней нанесены следующие обозначения: GLDEN-WA60; 11 Bт; 2700 K, 198-264 B; 50/60 Гц; 73 мА. Матовый светорассеиватель снимают, как и у предыдущей лампы. После этого увидим алюминиевую плату с расположенными на ней семью SMD-светодиодами типоразмера 3528. В отличие от предыдущей лампы, плата припаяна к драйверу и закреплена двумя винтами (рис. 3). Сняв её, увидим, что она была закреплена с помощью винтов на алюминиевом штампованном диске, плотно вставленном в корпус лампы (рис. 4). Заметно, что лампа сделана более качественно, и отвод тепла от светодиодов должен быть лучше.

Читайте также:  Как сохранить фото с аватарки в вайбере

Рис. 3. Лампа под торговой маркой General

Рис. 4. Диск лампы

Далее аналогично снимаем цоколь. А вот диск приходится потихоньку выбивать со стороны цоколя, просунув тонкий металлический стержень и уперев его ближе к краю, в ребро диска. Иначе диск будет выгибаться. Только после этого вынимаем плату драйвера. Он построен на аналогичной микросхеме BP9916C в корпусе SOP-8 и представляет собой также неизолированный понижающий преобразователь, позволяющий поддерживать постоянным ток через светодиоды. Схема отличается от предыдущей незначительно, в основном номиналами элементов и их обозначениями на плате, и ещё тем, что после резистора R1, параллельно диодному мосту, установлен керамический конденсатор ёмкостью 0,1 мкФ на напряжение 400 В. Поэтому приводить схему не имеет смысла. Микросхема установлена со стороны печатных проводников. Замкнув контакты неисправного светодиода, удалось восстановить работоспособность лампы. При сопротивлении регулировочных резисторов RS1 и RS2, равных 5,6 и 3,9 Ом, ток через светодиоды равен 130 мА.

Потом была вскрыта светодиодная лампа с товарным знаком ASD и с обозначениями на корпусе: LED-A60, 11 Вт, 220 В, 4000 К, 990 лм. Разборка лампы такая же, как и в предыдущих случаях. Вид лампы без матового светорассеивателя показан на рис. 5. На алюминиевой плате, которая просто вставлена в корпус, установлены 18 SMD-светодиодов типоразмера 3528. Площадь теплового контакта с корпусом, как и в первой лампе, очень мала. Плата со светодиодами припаяна непосредственно к плате драйвера. Эти светодиоды, как и в предыдущих лампах, начинают светить при напряжении 7 В, а при 8 В светятся достаточно ярко при токе 2 мА. Следовательно, их параметры должны быть схожими. Драйвер этой лампы построен на микросхеме BP9918C в миниатюрном корпусе для поверхностного монтажа SOT23-3. Эта микросхема аналогична микросхемам в предыдущих лампах и обладает схожими параметрами. Схема драйвера отличается отсутствием резистора R1, вместо которого на плате сделан тонкий змеевидный печатный проводник, а также номиналами некоторых элементов и обозначениями на плате. При сопротивлении резисторов RS1 и RS2, равных соответственно 13 и 10 Ом, ток через светодиоды — 55 мА, что примерно вдвое меньше, чем у предыдущих ламп.

Рис. 5. Вид лампы без матового светорассеивателя

Исходя из всего изложенного, напрашивается вывод, что причиной быстрого выхода из строя этих ламп является завышенный ток светодиодов и недостаточное их охлаждение и, следовательно, перегрев.

Было решено восстановить эти лампы, при этом постараться продлить срок их службы. Для начала были уменьшены токи светодиодов. В первой лампе — путём замены резисторов RS1 и RS2 (4,7 и 3,9 Ом) на два резистора сопротивлением по 10 Ом каждый. Ток через светодиоды со 120 мА уменьшился до 50 мА. Во второй лампе резистор сопротивлением 3,9 Ом был заменён резистором сопротивлением 10 Ом. Ток через светодиоды уменьшился с 130 до 85 мА. В третьей лампе взамен резистора сопротивлением 13 Ом установлен резистор сопротивлением 30 Ом. Ток через светодиоды при этом уменьшился с 50 до 40 мА. Светоотдача при этом упала незначительно, хотя всё по местам может расставить только дальнейшая опытная эксплуатация.

Кроме того, у первой и третьей ламп под светодиодами, на свободной стороне платы, были подложены толстые металлические шайбы, улучшающие тепловой контакт с корпусом. Везде была нанесена теплопроводная паста КПТ-8. Металлические цоколи ламп были приклеены к корпусу эпоксидным клеем, нанесённым в места высверленных отверстий. В корпусе, рядом с цоколем лампы, были просверлены вентиляционные отверстия, улучшающие охлаждение. Правда, при этом применять лампы во влажных помещениях будет нельзя. Если лампы планируется применять в закрытых светильниках, светорассеивающие колбы можно не устанавливать, соблюдая осторожность при установке самих ламп. В противном случае колбы приклеивают белым силиконовым герметиком, как было до этого. Посмотрим, как эти доработки повлияют на долговечность ламп.

И в заключение рассмотрим совершенно другую светодиодную лампу, ещё не бывшую в эксплуатации. Это лампа торговой марки ASD, предназначенная для подключения к переменно-му или постоянному напряжению 12 В. На корпус нанесены следующие обозначения: LED-JC, 5 ВТ, AC/DC, 12 В, цоколь G4, 3000 К. Эта небольшая лампа разбирается несложно. Снимают прозрачный пластиковый колпак, закрывающий светодиоды. Он крепится к корпусу на защёлках, которые очень хрупкие. Поэтому отгибать надо не сами защёлки, а часть корпуса колпака, к которому эти защёлки прикреплены. Для этого в корпусе колпака сделаны прорези, сразу не бросающиеся в глаза, но позволяющие поддеть отвёрткой и раздвинуть защёлки. Сняв колпачок, видно, что светодиоды и другие элементы установлены на гибкой печатной плате, которая с внутренней стороны покрыта слоем липкой ленты, поэтому просто снимают её.

Далее вынимают гибкую плату и отпаивают провода, соединяющие её с цоколем. После этого можно подробно рассмотреть конструкцию лампы. Её внешний вид показан на рис. 6. Материал её корпуса похож на керамику, видимо, чтобы не оплавился при нагреве светодиодов и, возможно, хоть как-то отводил тепло от них. Материал — довольно хрупкий, легко скалывается.

Рис. 6. Конструкция лампы

Схема драйвера этой лампы представлена на рис. 7. Он собран на микросхеме U1 в корпусе SOP 8. К сожалению, однозначно идентифицировать микросхему не удалось. На разных лампах неизменной была надпись на корпусе 1086. Светодиоды в лампе типоразмера 3528, с номинальным напряжением 3,4 В. Все остальные элементы — для поверхностного монтажа. При подключении к источнику напряжением 12 В выяснилось, что лампа потребляет ток 280 мА. При увеличении напряжения до 14 В ток через лампу возрос до 290 мА, а при снижении напряжения питания до 10,2 В он уменьшился до 270 мА.

Рис. 7. Схема драйвера

При питании лампы номинальным напряжением 12 В уже после семи минут работы, при касании корпуса или светодиодов пальцем, трудно удержать его на них — обжигает. Причина — в слишком плотном расположении светодиодов и в небольшом корпусе. Ручаться после этого в продолжительной работе этой лампы я бы не стал, если только не переделать лампу, снабдив светодиоды и драйвер дополнительными теплоотводами.

Автор: П. Юдин, г. Уфа

Мнения читателей
  • Юрий / 29.09.2019 — 19:46
    Небольшая, но информативная статья. Кропотливая работа исследователя поможет многим людям. Автор молодец!
  • Валерий / 02.03.2019 — 16:52
    Большое спасибо! Познавательно! Как раз сгорела лампа, как показана в 1-ом варианте, стал разбираться, наткнулся на данную статью. Теперь все ясно, не нужно хоть самому разбираться со схемой. Спасибо автору.
  • Паньшин Андрей / 03.02.2019 — 20:59
    Интересная статья. Какой тип драйвера U1 на оис. 7.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

И снова здравствуйте, мои маленькие любители внутренностей!

Мы, наконец-то, добрались до заключительной части повествования о светодиодных лампах, в рамках которой мы рассмотрим 4 лампы в цоколе E27, а также подведём заключительные итоги этого затянувшегося повествования.

Прошлые две части находятся тут и тут.

Не будем затягивать наш рассказ о лампах и сразу перейдём к главному – внутренностям пациентов, светодиодных ламп от фирм ASD, Gauss и Supra.

Светодиодные лампы в цоколе E27: просторный корпус = залог удачной лампочки

Как мы помним из первой части, все светодиодные лампы в цоколе E27 показали достойные характеристики по уровню пульсаций, не превысив 1%. Вполне естественно, что такой драйвер требует достаточно просторного корпуса для размещения хотя бы потому, что имеет больше компонент, нежели конденсаторный балласт. Однако на примере лампочки от фирмы Gauss мы могли убедиться, что даже в корпусе GU5.3 можно компактно разместить драйвер без пульсаций, выполненный по безтрансформаторной технологии.

Читайте также:  Погода в месте где я нахожусь

Что ж, посмотрим, что там внутри у первого подопытного кролика из сегодняшнего списка – лампа производителя ASD.

Крышка снимается довольно легко, практически голыми руками, что, по всей видимости, является производственным недостатком/браком, так как клей на обратной стороне присутствует. При этом светодиодная сборка крепится напрямую к металлическому корпусу лампы, однако теплоотвод организован лишь по внешнему кольцу, что, как читатель, наверное, уже понимает, nicht gut. Например, в тех же лампах E14 и GU5.3 сборка контактирует с теплоотводящим корпусом по всей площади.

Легко заметить, что предоставленный объём используется вольготно, без особых усилий по минимизации размеров драйвера. Электрическая схема представлена на изображении ниже. Она выполнена по уже ставшей классической для ламп с большим корпусом безтрансформатормной понижающей топологии. Расположение 28 светодиодов последовательное, при этом кое-где добавлены SMD резисторы(?). Если кто-то знает, зачем это сделано, то напишите, пожалуйста, в комментариях.

Отдельные светодиоды запакованы в продолговатые корпуса и впаяны между медными контактами, аналогичные SMD-компоненты фирма ASD использует и в лампах GU5.3. На рисунке ниже отчётливо видна граница между двумя такими контактами (тёмно-серая область). Размер самого светоизлучающего элемента 253 на 83 микрона.

Следующей на очереди будут две лампы от компании Gauss мощностью 6.5 и 12 Вт, соответственно. Несмотря на схожесть по многим критериям, данные светодиодные лампы имеют и некоторые различия, например, драйвер, и что самое иментересное – разные светодиоды внутри.

Рассеивающая колба очень удачно закреплена на теле лампы – приходится изрядно попотеть, чтобы выломать (да-да, именно выломать!) её оттуда, ибо клея и герметика в компании Gauss для лампочек не жалеют. Таким образом, совершенно спокойно можно использовать данные лампы в помещениях с высокой влажностью.

Однако лампочки фирмы Gauss имеют ту же проблему, что и ASD, металлический рассеиватель тепла в корпусе лампы соединён с алюминиевой подложкой, на которой закреплены светодиоды лишь по относительно небольшому кольцу вокруг. Конечно, с точки зрения теплофизиков такое решение. быть может, имеет смысл, но всё же…

Сам драйвер выполнен по безтрансформаторной технологии. Блоки светодиодов (всего их 12 штук, каждый в отдельном SMD корпусе) соединены последовательно.

Сапфировая подложка светоизлучающих чипов структурирована, как и у ASD — не один ли завод их, подложки, производит?! LED имеют излучающую поверхность аж в 283 на 140 квадратных микрометров, что является одним из самым большим показателей среди представленных ламп.

Обратимся теперь к лампочке на 12 Вт. Принципиально она мало чем отличается от лампы на 6.5 Вт: аналогичный драйвер, хоть и со своими особенностями, та же пластиковая колба с металлическим кольцом-рассеивателем внутри, аналогичные светодиодные модули, хоть и в большем количестве; однако только эта лампа имеет заливку драйвера специальным компаундом.

С электрической схемой драйвера возникли некоторые проблемы, поэтому блок где должна находится катушка оставлен под знаком вопроса. С одной стороны, используемая микросхема управления подразумевает безтрансформаторный драйвер, однако с другой стороны используемый дроссель имеет 3 вывода на плату, что, казалось бы, говорит нам о драйвере на базе обратноходового преобразователя, но сопротивлениями между контактами/ногами катушки всего-навсего 1.7, 5.8 и 6.2 Ома, что должно не вписывается в схему гальванической развязки в данном драйвере.

В 12 Вт лампочке установлено аж 32 корпуса с LED. Правда, сами светодиоды имеют несколько иной размер 275 на 148 мкм против 283 на 140 мкм у 6.5 Вт лампочки и отличное расположение контактных дорожек. На первый взгляд LED практически идентичны, однако всё же интересно, с чем это может быть связано: разные партии светодиодов или всё-таки они действительно разные для разных по мощности ламп? Напомню, что под нож шли лампы одной цветовой температуры — 2700К.


Светодиодные модули от одной и той же фирмы могут-таки отличаться – вот это поворот!

И последняя в этом классе, лампочка от компании Supra. Лампочка открывается тяжело, то есть с герметичностью у неё всё в полном порядке: герметика налито достаточно. Контакт нейтральной линии не припаян к самому цоколю, а лишь прижат им, как мы уже говорил в предыдущей части, данный способ фиксации не является самым надёжным – цоколь снять довольно сложно, но можно!

А вот что действительно удивило – светодиодные сборки, закреплённые на вполне гибком текстолите вместо алюминиевой подложки, который в свою очередь термопастой связан с теплоотводящим корпусом. Как следствие, другим положительным моментом стало наличие полноценного теплорассеивателя, а не кольца, как у трёх рассмотренных выше ламп.

Драйвер представленной лампы выполнен на базе технологии… Да, аналогичная история, как и с лампочкой Gauss 12 Вт. Простым прозвоном сложно понять, что представляет собой дроссель с тремя контактами на плате. Поэтому в итоговой таблице хоть эти два драйвера и будут фигурировать под «обратноходовый преобразователь», но скорее всего выполнены они по безтрансформаторной понижающей топологии. Хотя сознательные читатели присылают иногда полезные ссылки, из которых следует, что используемая микросхема подразумевает безтрнсформаторный драйвер.

Теперь проведём немного аналогий. Cветодиоды соединены последовательно-параллельно, как и у лампы ASD (звоночек номер раз).


Наименование управляющей микросхемы — BP2822 от компании BPSemi

Если же мы взглянем на сами светоизлучающие элементы, то окажется, что по габаритам (251 на 83 против 253 на 83 микрона), расположению контактных площадок и микроструктуре, они полностью идентичны светодиодам в лампе компании ASD (звоночек номер два). Да, они упакованы в корпус по две штуки, однако зачастую сам производитель диодов «пакует» их в разные корпуса: по одному, два, три, четыре и так далее. Так что вполне можно выдвинуть предположение, что лампочки ASD и Supra начинены LED-модулями одного и того же производителя. При эквивалентной начинке (драйвер+светодиоды), схожих светотехнических показателях не удивительно, что в рознице стоимость ламп практически не отличается – около 250-270 рублей (август-сентябрь 2015).


Deja vu? Таки да, полная идентичность с лампой ASD

Финальные выводы

Что ж, после такого длительного и где-то не всегда удачного, а где-то исключительно интригующего тестирования светодиодных лампы, а также путешествия по их внутреннему миру, остаётся подвести финальные итоги.

  • Про внешний вид. Как мы могли убедиться, даже те светодиодные лампы, которые кажутся герметичными, на самом деле такими не являются. Поэтому, дорогой мой читатель и покупатель, перед покупкой оных для помещений с повышенной влажностью, обязательно проверь крепление светорассеивателя!
  • Про драйверы. Драйверы всех ламп разделись на два больших лагеря: конденсаторный балласт (сильный коэффициент пульсаций до 10-15%) и безтрансформаторный драйвер (Kp 2 , однако за это приходится поплатиться 22 Вт рассеиваемой энергии на тот же самый мм 2 . Здесь-то и настаёт время компромисса и расплаты за «аналог» 100Вт лампочки. К сожалению, это трудноосуществимая задача без перераспределения тепловой энергии, выделяемой на светодиодах, и, соответственно, специальных радиаторов-рассеивателей.

NB: Автор статьи не является профессиональным инженером-электриком, поэтому если вы заметили ошибку или оплошность в схемах, тексте или ещё где-нибудь, то пиши, пожалуйста, в ЛС.

PS: Существует как минимум две подтверждённые фирмы-производителя управляющих микросхем Monolithic Power и BPSemi. Также некоторые reference design от Dialog Semiconductor (совместно iWatt)

PPS: Все схемы нарисованы в бесплатном (open-source) программном пакете QUCS, отыскать которой помог toster.

UPD: Комментарий с D3 принёс интересную информаци о помехах и способах защиты — тут.

Полный список опубликованных статей «Взгляд изнутри» на Хабре и GT:

Ссылка на основную публикацию
Gateray gr ep onu1 1 настройка
Как уже писалось выше, GEPON – полноценная сеть, построенная на пассивных оптических составляющих на всём протяжении от провайдера к абоненту....
Canon mf4730 как сканировать
Написал свой отзыв о Canon i - SENSYS MF 4730 – это одна из старых моделей МФУ, которую я купил...
Dir 320 горят все индикаторы
Привет! Да уж, давненько я не публиковал новых статей. Изучал новые направления. Например, активно занялся теорией и практикой в электронике,...
Hl2613 в светодиодной лампе что это
В мои руки попало несколько вышедших из строя, уже широко распространённых светодиодных ламп на напряжение 230 В, в изобилии предлагаемых...
Adblock detector