Что значит большая буква е в математике

Что значит большая буква е в математике

Число e всегда волновало меня — не как буква, а как математическая константа. Что число е означает на самом деле?

Разные математические книги и даже моя горячо любимая Википедия описывает эту величественную константу совершенно бестолковым научным жаргоном:

Математическая константа е является основанием натурального логарифма.

Если заинтересуетесь, что такое натуральный логарифм, найдете такое определение:

Натуральный логарифм, ранее известный как гиперболический логарифм, является логарифмом с основанием е, где е – иррациональная константа, приблизительно равная 2.718281828459.

Определения, конечно, правильные. Но понять их крайне сложно. Конечно, Википедия в этом не виновата: обычно математические пояснения сухи и формальны, составляются по всей строгости науки. Из-за этого новичкам сложно осваивать предмет (а когда-то каждый был новичком).

С меня хватит! Сегодня я делюсь своими высокоинтеллектуальными соображениями о том, что такое число е, и чем оно так круто! Отложите свои толстые, наводящие страх математические книжки в сторону!

Число е – это не просто число

Описывать е как «константу, приблизительно равную 2,71828…» — это все равно, что называть число пи «иррациональным числом, приблизительно равным 3,1415…». Несомненно, так и есть, но суть по-прежнему ускользает от нас.

Число пи — это соотношение длины окружности к диаметру, одинаковое для всех окружностей. Это фундаментальная пропорция, свойственная всем окружностям, а следовательно, она участвует в вычислении длины окружности, площади, объема и площади поверхности для кругов, сфер, цилиндров и т.д. Пи показывает, что все окружности связаны, не говоря уже о тригонометрических функциях, выводимых из окружностей (синус, косинус, тангенс).

Число е является базовым соотношением роста для всех непрерывно растущих процессов. Число е позволяет взять простой темп прироста (где разница видна только в конце года) и вычислить составляющие этого показателя, нормальный рост, при котором с каждой наносекундой (или даже быстрее) всё вырастает еще на немного.

Число е участвует как в системах с экспоненциальным, так и постоянным ростом: население, радиоактивный распад, подсчет процентов, и много-много других. Даже ступенчатые системы, которые не растут равномерно, можно аппроксимировать с помощью числа е.

Также, как любое число можно рассматривать в виде «масштабированной» версии 1 (базовой единицы), любую окружность можно рассматривать в виде «масштабированной» версии единичной окружности (с радиусом 1). И любой коэффициент роста может быть рассмотрен в виде «масштабированной» версии е («единичного» коэффициента роста).

Так что число е – это не случайное, взятое наугад число. Число е воплощает в себе идею, что все непрерывно растущие системы являются масштабированными версиями одного и того же показателя.

Читайте также:  Как составить вопросы к кроссворду

Понятие экспоненциального роста

Давайте начнем с рассмотрения базовой системы, которая удваивается за определенный период времени. Например:

  • Бактерии делятся и «удваиваются» в количестве каждые 24 часа
  • Мы получаем вдвое больше лапшинок, если разламываем их пополам
  • Ваши деньги каждый год увеличиваются вдвое, если вы получаете 100% прибыли (везунчик!)

И выглядит это примерно так:

Деление на два или удваивание – это очень простая прогрессия. Конечно, мы можем утроить или учетверить, но удваивание более удобно для пояснения.

Математически, если у нас есть х разделений, мы получаем в 2^x раз больше добра, чем было вначале. Если сделано только 1 разбиение, получаем в 2^1 раза больше. Если разбиений 4, у нас получится 2^4=16 частей. Общая формула выглядит так:

Другими словами, удвоение – это 100% рост. Мы можем переписать эту формулу так:

Это то же равенство, мы только разделили «2» на составные части, которыми в сущности и является это число: начальное значение (1) плюс 100%. Умно, да?

Конечно, мы можем подставить и любое другое число (50%, 25%, 200%) вместо 100% и получить формулу роста для этого нового коэффициента. Общая формула для х периодов временного ряда будет иметь вид:

Это просто означает, что мы используем норму возврата, (1 + прирост), «х» раз подряд.

Приглядимся поближе

Наша формула предполагает, что прирост происходит дискретными шагами. Наши бактерии ждут, ждут, а потом бац!, и в последнюю минуту они удваиваются в количестве. Наша прибыль по процентам от депозита магическим образом появляется ровно через 1 год. На основе формулы, написанной выше, прибыль растет ступенчато. Зеленые точки появляются внезапно.

Но мир не всегда таков. Если мы увеличим картинку, мы увидим, что наши друзья-бактерии делятся постоянно:

Зеленый малый не возникает из ничего: он медленно вырастает из синего родителя. После 1 периода времени (24 часа в нашем случае), зеленый друг уже полностью созрел. Повзрослев, он стает полноценным синим членом стада и может создавать новые зеленые клеточки сам.

Эта информация как-то изменит наше уравнение?

Не-а. В случае с бактериями, полусформированные зеленые клетки все же не могут ничего делать, пока не вырастут и совсем не отделятся от своих синих родителей. Так что уравнение справедливо.

Все знают геометрический смысл числа π — это длина окружности с единичным диаметром:

Читайте также:  Не отображаются звонки в журнале самсунг

А вот смысл другой важной константы, e, имеет свойство быстро забываться. То есть, не знаю, как вам, а мне каждый раз стоит усилий вспомнить, чем же так замечательно это число, равное 2,7182818284590. (значение я, однако, по памяти записал). Поэтому я решил написать заметку, чтобы больше из памяти не вылетало.

Число e по определению — предел функции y = (1 + 1 / x) x при x → ∞:

x y
1 (1 + 1 / 1) 1 = 2
2 (1 + 1 / 2) 2 = 2,25
3 (1 + 1 / 3) 3 = 2,3703703702.
10 (1 + 1 / 10) 10 = 2,5937424601.
100 (1 + 1 / 100) 100 = 2,7048138294.
1000 (1 + 1 / 1000) 1000 = 2,7169239322.
lim× → ∞ = 2,7182818284590.

Это определение, к сожалению, не наглядно. Непонятно, чем замечателен этот предел (несмотря на то, что он называется «вторым замечательным»). Подумаешь, взяли какую-то неуклюжую функцию, посчитали предел. У другой функции другой будет.

Но число e почему-то всплывает в целой куче самых разных ситуаций в математике.

Для меня главный смысл числа e раскрывается в поведении другой, куда более интересной функции, y = k x . Эта функция обладает уникальным свойством при k = e, которое можно показать графически так:

В точке 0 функция принимает значение e 0 = 1. Если провести касательную в точке x = 0, то она пройдёт к оси абсцисс под углом с тангенсом 1 (в жёлтом треугольнике отношение противолежащего катета 1 к прилежащему 1 равно 1). В точке 1 функция принимает значение e 1 = e . Если провести касательную в точке x = 1, то она пройдёт под углом с тангенсом e (в зелёном треугольнике отношение противолежащего катета e к прилежащему 1 равно e). В точке 2 значение e 2 функции снова совпадает с тангенсом угла наклона касательной к ней. Из-за этого, заодно, сами касательные пересекают ось абсцисс ровно в точках −1, 0, 1, 2 и т. д.

Среди всех функций y = k x (например, 2 x , 10 x , π x и т. д.), функция e x — единственная обладает такой красотой, что тангенс угла её наклона в каждой её точке совпадает со значением самой функции. Значит по определению значение этой функции в каждой точке совпадает со значением её производной в этой точке: (e x )´ = e x . Почему-то именно число e = 2,7182818284590. нужно возводить в разные степени, чтобы получилась такая картинка.

Именно в этом, на мой вкус, состоит его смысл.

Числа π и e входят в мою любимую формулу — формулу Эйлера, которая связывает 5 самых главных констант — ноль, единицу, мнимую единицу i и, собственно, числа π и е:

Почему число 2,7182818284590. в комплексной степени 3,1415926535. i вдруг равно минус единице? Ответ на этот вопрос выходит за рамки заметки и мог бы составить содержание небольшой книги, которая потребует некоторого начального понимания тригонометрии, пределов и рядов.

Читайте также:  Центр обновления постоянно включается

Меня всегда поражала красота этой формулы. Возможно, в математике есть и более удивительные факты, но для моего уровня (тройка в физико-математическом лицее и пятёрка за комплексный анализ в универе) это самое главное чудо.

Нажмите, чтобы скопировать и вставить символ

Знаки плюс, минус, плюс минус, равно, не равно, примерно равно, умножения, деления, сумма

Степени и корни

Ещё знаки — существует, пустое множество, принадлежит, подмножество, бесконечность

Сравнение — больше меньше или равно

Интегралы

Геометрические — диаметр, угол, градус, перпендикуляр, параллельность, диаметр, пропорциональности, подобия, пересечения, объединения

Фигуры — треугольники, дуги, параллелограмм, ромб

Логические — следовательно, и, или, отрицания, тождественный

В разделе собраны математические символы, которые невозможно корректно отобразить с помощью ввода на клавиатуре. Весь представленный набор можно разделить на несколько групп:

  • знаки операций – сложение, вычитание, деление, умножение, сумма, тождество;
  • символы интегралов – двойные, тройные, интеграл по объему, поверхности, с правым и левым обходом;
  • знаки сравнения – больше, меньше, равно;
  • геометрические символы – отображение угла, пропорции, диаметра;
  • геометрические фигуры;
  • знак извлечения из корня, степень;
  • иные символы – бесконечность, множество, квантор существования.

Использование данных иконок – единственный вариант корректного отображения ряда математических символов на сайте или в сообщении в любой операционной системе конечного пользователя. Достаточно лишь скопировать закодированный значок. Применение изображений для этих целей значительно усложняет процесс, требует подгонки при разработке и наполнении интернет-ресурса. Кроме того, медиа-контент занимает большой объем дискового пространства.

Математические символы подойдут для публикаций в социальных сетях, создания сообщений в чатах и форумах, разработки интернет-страниц.

Математика, как язык всех наук, не может обходиться без системы записи. Многочисленные понятия, и операторы обрели своё начертание по мере развития этой науки. Так как в стандартные алфавиты эти символы не входят, напечатать их с клавиатуры может оказаться проблематично. Отсюда можно скопировать и вставить.

Консорциуму Юникода не чужды проблемы учёных, поэтому в таблицу было включено множество различных знаков. Если тут нет того, что нужно, воспользуйтесь поиском по сайту или посмотрите в разделах математические символы , разнообразные математические символы-A , разнообразные математические символы-B , дополнительные математические операторы . Буквы для формул можно взять в наборе греческие буквы и блоке математические буквенно-цифровые символы .

Числа для степеней составляются из маленьких цифр. Там же собраны дроби.

Ссылка на основную публикацию
Чему равна сумма бесконечно убывающей геометрической прогрессии
ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ VI § l48. Сумма бесконечно убывающей геометрической прогрессии До сих пор, говоря о суммах, мы всегда предполагали, что...
Хорошие дешевые жесткие диски
Лучший жесткий диск далек от SSD в плане скорости передачи данных, однако есть причина, по которой данные устройства все еще...
Хорошие ноутбуки за 20000 для игр
Если вам необходим хороший ноутбук для работы, то вам придется потратится как минимум 20 тысяч рублей. За эти деньги вы...
Чем стереть автомобильную краску
Автомобили настолько плотно вошли в нашу жизнь, что большинство людей не представляет свою жизнь без персонального транспортного средства. Машина —...
Adblock detector