Что такое разряжение воздуха

Что такое разряжение воздуха

Окружающий поверхность земли атмосферный воздух оказывает давление на все тела, находящиеся на земле. Это давление атмосферы опре­деляют так: стеклянную трубку длиной в 100 см, наполненную ртутью и запаянную с одного конца, перевер­тывают открытым концом в сосуд с ртутью. Ртуть в трубке немного опустится и остановит­ся на высоте 760 мм от уровня ртути в сосуде (рис. 58). По этому принципу устроен прибор для измерения давления атмосферы — баро­метр. Следовательно, атмосферное давление уравновешивается весом столба ртути высотой 760 мм, а так как ртуть в 13,6 раза тяжелее воды, то для того чтобы уравновесить столб I 1 I ртути столбом воды, высота его должна быть

10,33 м (76 смХ 13,6=;1033 см или 10,33 м).

Э™ давление называется физической

атмосферой. В технических измерениях

—————— пользуются другой единицей измерения —

Рис. 58. Схема ртутного баро­метра

технической атмосферой, равной давлению столба воды высотой в 10 м или 73,56 см ртутного столба.

Различается давление абсолютное и избыточное. При определении абсолютного давления учиты­вают и давление атмосферы и обозначают его буквами ата. Из­быточным давлением называют давление сверх атмосферного и обозначают буквами ати. Например, манометр на котле пока­зывает давление избыточное. Давление ниже атмосферного на­зывают разрежением или вакуумом. Например, разрежение

ЗО мм водяного столба означает, что давление на 30 мм водяно­го столба ниже атмосферного.

Одна техническая атмосфера соответствует давлению 1 кг на 1 см2 (сокращена 1 кг/см2), потому, что столб воды высотой 10 м и сечением 1 см2 весит 1 кг.

Рис. 59. Работа дымовой трубы

Небольшое давление и разрежение измеряются в миллимет­рах водяного или ртутного столба, причем 1 мм водяного столба равен давлению 1 кг/м2 (объем, занимаемый слоем во­ды высотой в 1 мм и налитой на площадь 1 м2, весит 1 кг).

Дымовые трубы. Газы в теп­ловых установках движутся за счет тяги.

Различают тягу естест­венную, создаваемую дымо­вой трубой, и искусствен­ную, создаваемую вентилято­рами.

Действие дымовой трубы (рис. 59) основано на том, что поступающие в нее дымовые газы нагреты и имеют удель­ный вес меньший, чем вес на­ружного воздуха. Вследствие этого возникает разница между давлением столба наружного воздуха (такой же высоты, как труба) и давлением столба го­рячих газов в самой трубе, ко­торая и обусловливает движе­ние газов из трубы наружу и наружного воздуха в топку.

Тяга (S), создаваемая трубой, будет равна:

S = — tf(70-7j кг/м2,

где Я — высота трубы в м;

То—-удельный вес наружного воздуха в кг/мъ

Т, —средний удельный >вес дымовых газов в трубе в кг/м3.

Из формулы видно, что чем выше труба и чем больше разни­ца между удельным весом наружного воздуха и газов в трубе, тем большая создается тяга. Так как наружный воздух зимой имеет большей удельный вес, чем летом, то понятно, почему в зимнее время увеличивается тяга, а летом уменьшается.

Вентиляторы. В современных тепловых установках сопротив­

ления, которые приходится преодолевать при движении дымо­вым газа. м, бывают настолько велики, что тяги дымовой трубы оказывается недостаточно. В таких случаях приходится прибе­гать к искусственной тяге. Искусственная тяга создается вен­тиляторами.

Вентиляторы могут создавать как разрежение, так и давле­ние до 1500 кг/м2.

По конструктивным особенностям вентиляторы подразделя­ются на центробежные и осевые.

Центробежный вентилятор (рис. 60) состоит из ло-

Рис. 60. Центробежный вентилятор:

1 — кожух, 2 — лопастное колесо, 3 — патрубок

лопастного колеса 2, улиткообразного кожуха 1 и привода. На колесе име­ются узкие лопатки, наружные концы которых загнуты по направлению вра­щения (есть вентиляторы с лопатками иного типа). Под действием центро­бежной силы, развиваемой при враще­нии колеса, воздух отбрасывается к периферии и под давлением выходит из кожуха через прямоугольный нагне­тательный патрубок 3. При этом внутри колеса образуется разрежение, вслед­ствие чего наружный воздух устрем­ляется в вентилятор через всасываю­щий патрубок. Если разрезать какой — либо тракт (например, трубу) и подсо­единить один его конец к всасываю­щему патрубку вентилятора, а второй — к нагнетательному, то при работе вентилятора воздух или газ будет перемещаться по тракту. В ветви, подсоединенной к всасывающему патрубку, обычно создается разрежение, а в подсоединенной к выхлопно­му патрубку — давление.

В зависимости от развиваемого давления центробежные вен­тиляторы делятся на вентиляторы низкого давления (до 100 мм вод. ст), среднего (до 300 мм вод. ст.) и высокого (до 1500 мм вод. ст.).

В зависимости от направления выхода воздуха вентиляторы могут быть правого ‘Вращения (по часовой стрелке, если смот­реть со стороны привода) и левого вращения (против часовой стрелки).

Колесо центробежного вентилятора приводится в движение непосредственно от электродвигателя или при помощи ременной передачи.

Осевой вентилятор (винтовой, крыльчатый, пропел­лерный) представляет собой лопастное колесо, расположенное в цилиндрическом кожухе (рис. 61). При вращении колеса воз­дух перемещается в направлении оси, поступая через входное 72

отверстие и выходя через выпускное. Колесо приводится во вра­щение электродвигателем.

Осевые вентиляторы развивают небольшое давление, до 40 мм вод. ст., но в то же время перемещают большие объемы

Рис. 61. Общий вид осе­вого вентилятора

На гипсовых заводах для перемещения запыленных газов применяют центробежные (пылевые) вентиляторы с меньшим числом лопаток (обычно 6), благодаря чему рабочее колесо не забивается пылью. Для перемещения запыленных дымовых газов с высокой температурой (200—300°) применяют специальные центробежные вентиля­торы более прочной конструкции (ды­мососы) .

Мощность электродвигателя, кото­рый требуется для работы вентилятора, определяется по формуле QH

где Q — количество перемещаемого воздуха в м3/час;

Н — суммарные потери в сети (со­противление сети) в кг/лг2; т]в—коэффициент полезного действия вентилятора, опреде­ляется по таблице, обычно т> „ = 0,5-+- 0,65; т]п —«. п. д — передачи, в зависимости от типа передачи ко­леблется от 0,85 до 0,95.

Установочная мощность электродвигателя с учетом пуско­вого момента должна быть в 1,1 —г— 1,3 раза больше.

Если перемещаются горячие и запыленные газы, то, опреде­ляя мощность мотора, вводят поправку, учитывая температуру газа и концентрацию пыли в нем.

Эксплуатируя вентиляторные установки, необходимо повсед­невно наблюдать за состоянием газопроводов, вентиляторов и электродвигателей, своевременно обнаруживать и устранять неплотности в газопроводах и прочищать их. Места засорения воздухопроводов легко обнаружить простукиванием.

Для того чтобы вентилятор работал без неполадок, надо его хорошо балансировать. Шариковые подшипники вентилятора следует периодически промывать керосином и заполнять смаз­кой. В случае нагрева подшипников выше нормы необходимо найти причину нагрева и устранить ее. Центробежные вентиля­торы следует периодически открывать и прочищать рабочие ко­леса. Необходимо такпф содержать в чистоте и обеспечивать надлежащий уход за моторами и приводами.

Топливо сжигают в специальных устройствах — топках. Топ­ки представляют собой или самостоятельный агрегат или явля­ются частью тепловой установки, как, например, в варочных кот­лах.

По конструкции топки делятся на слоевые и камерные.

В слоевой топке имеется колосниковая решетка, на которой горит кусковое топливо. Часть топки над слоем топлива назы­вается топочной камерой или камерой горения слоевой топки. В ней сгорают выделившиеся из слоя горючие газы и мелкие частицы топлива.

Часть топки, расположенная под решеткой, называется зольником.

Камерные топки предназначены для сжигания газа, жидкого топлива, искусственно приготовленной угольной пыли или дру­гих мелко дробленых топлив (опилок, фрезерного торфа), по­этому в них нет колосниковой решетки.

В камерных топках топливо горит во взвешенном состоянии, в факеле.

Размеры топок характеризуются тепловой мощностью, пло­щадью колосниковой решетки и объемом топочной камеры.

Мощность топки определяется количеством сжигаемого в ней топлива в час (в кг/час). Так как теплотворность топлива ко­леблется в значительных пределах, то мощность топки более точно может быть выражена количеством тепла, выделяюще­гося в ней за один час (Q ккал/час = BQPH ккал/час). Интен­сивность работы топок оценивают тепловым напряжением ко­лосниковой решетки и тепловым напряжением топочной, камеры, т. е. количеством тепла, выделившимся в топке за час, отнесен­ным к 1 м2 решетки или к 1 Л43 объема камеры.

Тепловые напряжения топочной камеры в ккал/м2 • час

300 000—400000 200000—350 000 250 000—450 000 250 000—500 000 200 000—350 000

Тепловые напряжения колосниковых решеток в промышлен­ных топках при сжигании различных видов топлива приведены в табл. 5.

Топки с горизонтальной решеткой. Ручная топка с горизон­тальной решеткой (рис. 62) состоит из камеры горения 7, колос­никовой решетки 2 и зольника 3. Колосниковая решетка, на ко­торой сжигается топливо, состоит из чугунных колосников, уло­женных на чугунные или железные подколосниковые балки.

При сжигании дров или кускового торфа применяют колос-

Тепловые напряжения колосниковых решеток

Тепловое напряжение в ккалім^-час

Топки с горизонталь­ной или наклонной ко­лосниковой решеткой при естественной тяге и ручном обслуживании Полумеханизирован — ные топки с горизонталь­ной решеткой и воздуш­ным дутьем, с качаю­щимися. колосниками и ручным обслуживанием

Дрова и торф Бурый уголь Каменный уголь Антрацит

Дрова и торф Бурый уголь Каменный уголь Антрацит:

500 000—700000 150000—300000 300000—500 000 400000-600 000

1000000-1 400 000 900 000—1300 000 1200 000—1600 000

800000-1 100 000

иики в виде брусков или балочек (балочные колосники). Когда колосники укладывают на опорные балки, между ними образу­ются зазоры шириной до 20—30 мм.

Читайте также:  Бесплатная программа для печати фото на документы

При сжигании каменного угля или антрацита решетку дела­ют из колосников в виде плит (плиточные колосники). Колосни­

Рис. 62. Топка с горизонталь­ной колосниковой решеткой: 1 — приямок для сбора уносов, 2 — колосниковая решетка, 3 — золь­ник, 4 — зольниковая дверка, 5 — дверка для заброски топлива, 6 — стены, 7 — камера горения, 8 — свод, 9 — порог, 10 — шнбер

ки имеют чаще всего щелевид­ные отверстия шириной 6— 9 мм, расширяющиеся к ниж­ней стороне колосника до 9— 12 мм. Сечение отверстий, че­рез которые может проходить воздух (живое сечение), в пли­точных колосниках составляет 10—20% от общей площади ко­лосниковой решетки, в балоч­ных колосниках — 25—40 %. Через отверстия в решетке к топливу подводится необходи­мый для горения воздух, а так­же просыпается зола в золь­ник.

Различают топки с естест­венным подводом воздуха под колосники и искусственным дутьем. Для искусственного дутья .используют дутьевой вентилятор.

В топке делают переваль­

ную стенку или порог 9 из огнеупорного кирпича, благодаря ко­торому воздух направляется вверх и создаются условия для лучшего перемешивания воздуха с горючими газами.

Для полного сжигания топлива необходимо, чтобы на колос­никовой решетке оно лежало слоем определенной толщины.

Ниже приведена толщина слоя (в мм) различного топлива:

Бурые угли. . 100—300

Антрацит мелкий. . . 60—80

» крупный Торф кусковой. Дрова.

Для нормальных условий горения в топке необходимо под­держивать разрежение (1—2 мм вод. ст.). Для этого регулиру­ют отбор газов шибером 10, установленным в дымовом борове, и подачу воздуха под колосники дутьевым вентилятором.

Рис. 63. Качающиеся колосники

Недостаток ручных топок: неравномерность процесса горе­ния и тяжелый труд кочегара. Поэтому в настоящее время руч­ные топки применяют только в небольших установках, где сжи­гается 200—300 кг топлива в час.

Топки с качающимися колосниками. Топки с качающимися колосниками (рис. 63) легко очищаются от шлака. Колосники периодически поворачиваются в одну ‘И другую сторону на не­который угол, взрыхляют шлак и сбрасывают в зольник часть выжженного шлака. Полностью очищают топку с качающимися колосниками один раз в сутки.

Топки с пневматическими забрасывателями (рис. 64). В этих топках облегчается загрузка топлива на решетку. Топливо из 76

загрузочной воронки / шнеком 2 выдается на наклонную раз­гонную плиту 3, падает с нее на распределительную плиту 5 и струей воздуха, поступающего из сопла 4, сдувается в топочное пространство. Для равномерного распределения топлива по ре­шетке меняют положение распределительной плиты 5 и силу воздушной струи. На 1 кг топлива требуется около 0,25 м? воз­духа, который подается вентилятором с напором до 300 мм вод. ст. При этом более крупные куски топлива ложатся на переднюю часть решетки около распределительной плиты, а бо­лее мелкие летят на заднюю ее часть; сопротивление слоя топлива на решетке не одинаково. Поэтому пространство под колосниками раз­делено на поперечные зоны, и к зад­ней зоне воздух подводится под бо­лее сильным давлением, чем к ос­тальным.

Топка с механическим ротацион­ным забрасывателем ПМР завода «Комега» (рис. 65). Топливо подает­ся дозатором в ротационный забра­сыватель и крыльчаткой (метате-° лем) сбрасывается в топку. Изменяя” положение отражателя (отбойного щита), топливо распределяют по длине решетки: если поднять отра­жатель вверх — куски топлива ле­тят дальше, если опустить вниз — топливо ложится ближе. В Противо — Рис — 64- Пневматический заб­расыватель:

положность пневматическому за — , „ „„„

/ — загрузочная воронка, 2— топ-

ОрНСЫВаТелЮ ротационным забрасы — ливоподающий шнек, 3 — разгон-

ватель крупные куски топлива иая5 “рИасіЬеда.“^ь°нГя плит/81′ подает ближе к порогу, а мелкие —

ближе к фронту топки. Поэтому в переднюю зону воздух по­дается под более сильным давлением. При работе на сортиро­ванном угле пространство под колосниками может быть не раз­делено на зоны.

Показанная на рис. 65 топка имеет колосниковую решетку с поворотными колосниками. При повороте группы колосников при помощи тяг, соединенных с рычагами, шлак проваливается в бункер.

Пневмомеханические забрасыватели ЦКТИ (рис. 66).

Топливо в них забрасывается пневматическим и механическим путем. Благодаря такому сочетанию топливо равномерно рас­пределяется вдоль решетки. Вследствие волнообразного очерта­ния лопастей метателя топливо разбрасывается веером и рав­номерно распределяется по ширине решетки.

Шахтные топки (рис. 67). В шахтных топках сжигают топ­ливо большой влажности: дрова, торф и др. В этих топках над колосниковой решеткой имеется шахта 1, в которой подсуши­вается топливо и частично выделяются летучие вещества. Бла-

Рис. 65. Топка с механическим ротационным забрасывателем:

/ — дутьевая заслонка, 2 — загрузочная дверка, 5 — рычаг, 4— забрасыватель, 5—пи­татель, 6 — бункер, 7 — отражатель, 8 — решетка

годаря этому ускоряется горение топлива на решетке и разви — вается более высокая температура в топке.

В некоторых случаях важно, чтобы в топках образовывались продукты неполного сгорания топлива (например, СО) для того, 78

чтобы их можно было направить в печь (например, шахтную) для дожигания.

При таком ступенчатом процессе горения, названном полуга — зовым, легче получить высокую температуру в печи и равномер­ный обжиг материала.

К полугазовому процессу прибегают, когда необходимо в пе­чи создать температуру выше 900—1000°.

Для этого обычно используют шахтные топки, сжигая в них дрова, торф или длиниопламенные угли. Слой дров и торфа в топке должен быть толщиной до 1 м, бурого угля — до 0,8 м.

Рис. 67. Шахтная топка (для тор­фа) с наклонными колосниками:

1 — шахта, 2 — наклонные колосники, 3 — дожигательные решетки

Температура в полугазовой топке ниже, чем в топках пол­ного сгорания.

Топка с шурующей планкой. В этой топке полностью меха­низирован процесс подачи топ­лива, шуровки слоя и удале­ния шлака и золы.

Решетка (рис. 68) представ­ляет собой колосниковое по­лотно 9 длиной 3 м и шириной 1 м, состоящее из двух рядов колосниковых плит с круглыми отверстиями диаметром 6 мм. Между двумя рядами непод­вижных плит имеется канал шириной 20 мм, вдоль которо­го движется «бесконечная» цепь 4, приводящая в движение шурующую планку 3. Планка представляет собой трехгран­ную балку с круто наклоненной передней и пологой задней гранями. Длина планки нем­ного меньше ширины колосни­кового полотна.

Для защиты цепи от горящего топлива на ней укреплены уз­кие чугунные колосники, перекрывающие канал, в котором раз­мещена цепь.

Тяговая цепь надета на две звездочки—переднюю 1, закреп­ленную на приводном валу, и заднюю 6, свободно посаженную на неподвижной оси. Планка периодически движется вперед и «азад вдоль решетки. При движении вперед она передней гранью захватывает из ящика для угля 2 некоторое количество топлива и передвигает его по решетке, одновременно сбрасывая шлак. При обратном движении планка, вследствие малого угла накло-

■на задней грани, не захватывает топливо, а лишь разрыхляет его, проходя под слоем.

Так планка подает топливо, шурует и рыхлит слой и сбрасы­вает шлак в бункер.

Жидкое топливо, газ и угольная пыль сжигаются факельным способом, т. е. во взвешенном состоянии, в топочной камере или непосредственно в рабочем объеме печи. Распыляют и тщатель­но смешивают топливо с воздухом горелки и форсунки.

Надеюсь, не я один ждал продолжения своего цикла статей "ФКС", поэтому сегодня мы будем с вами не просто крутить механику, как было в предыдущей серии статей, а уже попробуем запитать ДВС смесью и заставим его работать.

Многим может показаться, что после рассмотрения поведения ШПГ и КШМ целесообразно было бы повращать распредвал и поподнимать клапана, но уверяю вас, что без попытки виртуально завести мотор с неизвестной нам пока конфигурацией газораспределения сразу окунуться в процессы наполнения было бы крайне неудобно. Поэтому мы сегодня представим некоторый бензиновый двигатель внутреннего сгорания и приступим к его оживлению.

Что необходимо, чтобы собранный мотор начал работать? Правильно! Воздух, топливо и зажигание.

Сегодня мы рассмотрим только воздух и топливо.

Согласитесь, бессмысленно лить топливо в цилиндры, когда мы понятия не имеем, сколько же воздуха поступает туда. То же самое можно сказать и про зажигание. Поэтому всё всегда начинается с воздуха.

На самом деле конструктивные особенности атмосферного мотора определяют потребление воздуха. Ни электроникой, ни чем бы то ни было другим эти законы изменить нельзя. Но под мотором я подразумеваю не только столб, а в том числе впуск и выпуск.

Теперь мы начнем вращать (пока принудительно, ибо мы ещё не умеем его питать) коленчатый вал двигателя. Двигатель начинает работать аналогично компрессору. Мы чувствуем разрежение во впускном коллекторе, чувствуем пульсации давления в выпускном коллекторе. Но нужно не забывать, что задача у ДВС не нагнетать куда-либо давление, поэтому выхлоп должен быть открыт в атмосферу.

Как мы раньше заметили, во впуске имеется некоторое разрежение воздуха. Даже при снятой дроссельной заслонке. Это нормально. Воздух принудительно закачивается поршнями из коллектора, но обратно не отдает, а выкидывает в выхлопную систему. Вот с разрежением то мы сейчас и поработаем.

Во-первых, давайте определимся, что такое разрежение? Это некоторое давление ниже значения атмосферного, т.е. 1 бара, или 100 кПа. Многие путаются в понятиях разрежение растёт и давление растёт, особенно, когда сталкиваются с различного рода литературой.

Читайте также:  Как разблокировать ксиаоми если забыл графический ключ

Давайте четко для себя уясним, что нулевое разрежение равно атмосферному давлению. А разрежение в 1 бар (где-то можно встретить понятие отрицательного давления, т.е. — 1 бар) — это нулевое давление, т.е. фактически вакуум. Важно понимать, что как такового отрицательного давления в природе существовать не может, это просто термин для удобства, когда работают с разреженными системами. Разность давлений может быть хоть минус 100 бар, но давление даже в минус 0,0000001 бар существовать не может.

Так вот, когда мы будем говорить "давление" — это абсолютное давление. Когда мы будем говорить "разрежение", то мы будем говорить о разнице атмосферного давления и абсолютного давления системы (отступления ради скажу, что когда говорят, что настройка турбины производится на 0,5 бара, то подразумевается избыточное давление, т.е. по факту имеется ввиду 1,5 бара абсолютного давления).

Итак, вернемся к нашему двигателю. Когда двигатель не вращается, то давление во впускном коллекторе у него равно атмосферному. Когда мы начинаем вращать его, то с повышением оборотов начинает расти разряжение в коллекторе, иными словами — падать абсолютное давление. И чем меньше сечение для проникновения воздуха в коллектор (т.е. щель открытия дроссельной заслонки или открытие клапана холостого хода, или же это жиклер), тем больше будет разрежение на том же моторе при тех же оборотах.

Практика показывает, что в режиме поддержания оборотов оборотов, т.е. для компенсации только внутренних сил, как правило требуется разряжение в 0,6…0,8 бар (или же 0,2…0,4 бара абсолютного давления). О чем это говорит? О том, что не важно, какое количество оборотов вы развиваете мотором, разряжение остается почти одинаковым (изменение не столь значительное, не более 0,1 бара), если не происходит увеличения оборотов. Тут у многих возникает резонный вопрос: как же так? А как же разные объемы двигателей, и как же двигатель может вращаться больше раз в секунду, если давление почти то же самое? Заранее отвечу: для больших объемов двигателей потому и ставят большие дроссельные заслонки и клапана холостого хода открываются на большее значение, а что же касается увеличенных оборотов, то тут ответ в самом вопросе: да, разрежение то же, но количество воздуха, поступающее в цилиндр за единицу времени больше на более высоких оборотах, нежели на низких. Т.е. двигатель всегда стремится выйти на это значение разрежения во впускном коллекторе с небольшими поправками на преодоление возрастающих сил.

Как же меняются обороты двигателя? Мы открываем дроссельную заслонку, увеличивая сечение поступления воздуха, разрежение падает (т.е. давление становится больше и ближе к атмосферному), поэтому происходит увеличение оборотов до тех пор, пока разрежение в коллекторе опять не достигнет требуемого нам значения.

Как же узнать, сколько воздуха в попугаях попадает в цилиндры? Тут на помощь приходит закон Менделеева-Клапейрона. Он, правда, для идеального газа, но поможет нам понять суть для абсолютно неидеального воздуха:

p — абсолютное давление (в Па),
V — объем воздуха (в кубических метрах),
m — масса воздуха (в г),
R — универсальная газовая постоянная ( R = 8,314 ДЖ/(моль*К) ),
T — температура воздуха (в Кельвинах),
М — молярная масса воздуха (28,98 г/моль)

Для знатоков системы Си поясню, что умышленно ввел граммы, а не килограммы, ибо они сокращаются для массы и молярной массы.

Итак, хорошо, что немного освежили курс физики, но пока это нам абсолютно ничего не дает. Едем дальше:

выразим массу через давление:

А вот это нам уже что-то да даёт. Используя эту формулу, мы можем посчитать, сколько воздуха поступает в двигатель за полный цикл, т.е. 2 оборота (помним, что сейчас мы ведём речь о четырехтактном моторе).

Таким образом, подставив вместо V рабочий объём двигателя, мы сможем высчитать массу воздуха, потребляемую двигателем за два оборота. Должен отметить, что на практике за объем принимается не совсем объем двигателя, а вводится понятие коэффициент наполнения, который может быть как меньше, так и больше 1-цы, причем его значение может меняться от оборотов. Но этим как раз и занимается наука о газораспределении, и именно поэтому мы пока отложили данный вопрос. Пока же будем считать, что коэффициент наполнения у нас всегда равен единицы.

Итак, приходим у некоторому примеру:

Давление во впуске — 30 к Па (как писали выше),
Объем двигателя — 2 литра, или же 0,002 кубических метра,
Температура воздуха — 27 градусов по Цельсию (Или же 300 К).

m = p*V*M/ (R*T) = 30 000 Па * 0,002 м3 * 28,98 г/моль / (8,314 ДЖ/(моль*К) * 300 К) = 0,697 г

Особо внимательные, наверное, заметили, что если вписывать значения не в Си, а заменить Па на кПа, при этом кубические метры на литры, то результат будет тот же.

Итак, мы получили, что 4-хтактный 2-хлитровый двигатель в режиме поддержания оборотов у нас потребляет 0,697 г воздуха за 2 оборота.
Если этот мотор имеет 4 цилиндра, то один цилиндр за такт впуска потребляет четверть, т.е. 0,174 грамма воздуха.
Если же мотор 6-тицилиндровый, то один цилиндр потребляет в полтора раза меньше четырехцилиндрового, т.е. 0,116 грамм.

При открывании дроссельной заслонки давление в коллекторе растет (а разрежение падает — не забываем). Если мы с холостого хода открыли дроссель на полную, то разрежение достигает порядка 0,1 бара, или же абсолютное давление достигает значения 0,9 бара.

Тогда в этот же мотор за два оборота начинает поступать воздух массой:

m = p*V*M/ (R*T) = 90 кПа * 2 л * 28,98 г/моль / (8,314 ДЖ/(моль*К) * 300 К) = 2 г

Если заметили, то я как раз произвел подмену размерностей для удобства.

С увеличением оборотов разряжение будет расти, так как при том же сечении открытой дроссельной заслонки количество оборотов в минуту будет увеличиваться, до тех пор пока опять мы не выйдем на низкое давление в коллекторе порядка 0,2…0,3 атмосфер.

Чтобы не было недомолвок, поясню один момент: когда разрежение увеличится и обороты стабилизируются, это ни в коем разе не говорит, что двигатель начнет потреблять столько же воздуха, как и потреблял до этого. Более того, он будет потреблять даже больше, чем при раскрытии дросселя, если обороты значительно увеличатся. Поясню:

Мы открыли дроссель на 1000 об/мин. Давление в коллекторе поднялось до 0,9 бара. Начали потреблять 2 грамма воздуха за 2 оборота. Т.е. 1000 г/мин.
Теперь двигатель развил 6000 об/мин. Давление в коллекторе упало до 0,3 бара. Начали потреблять 0,697 грамм за 2 оборота. Но при этом уже 2091 г/мин.

Вдаваясь в детали, можно сказать, что значения разрежения и давления, о которых мы говорили, берутся средние. На деле же во впускном коллекторе постоянно пульсируют воздушные потоки, при этом пульсирует и давление. Но это задача более серьезного уровня, и на эти тонкости обращают опять же при расчетах механизмов газораспределения и при расчетах впускных коллекторов. Я неоднократно в беседах говорю, что правильно рассчитанный впускной коллектор, как и выпускной, — ключ к хорошей работе ДВС. Но это уже совсем другая тема=)

Буквально только что мы повращали двигатель и понаблюдали, сколько же воздуха он потребляет. Но мы же не хотим тратить собственные силы и энергию на перекачку воздуха из впуска в выпуск, а хотим, чтобы наоборот, двигатель сам крутился, да ещё и нас возил. Причем как возил!

Ну, а законы физики гласят: "За всё надо платить". Энергия не берётся ниоткуда и не уходит в никуда. А в ДВС энергия берется из топлива. В нашем случае — из бензина.

Чтобы знать, сколько топлива подавать, надо знать, сколько кислорода поступает в цилиндры. Совсем недавно мы научились считать, сколько воздуха попадает, а значит, можем понять и сколько кислорода с ним.

Считается, что массовая доля кислорода в воздухе составляет примерно 23,1…23,2 процента. Следовательно, рассмотренный ранее двухлитровый двигатель потребляет при той же температуре за два оборота:

При давлении в коллекторе 0,3 бара — 0,697 г * 0,231 = 0,161 г кислорода
При давлении в коллекторе 0,9 бар — 2 г * 0,231 = 0,462 г кислорода

Считается, что оптимальное соотношение воздух-топливо составляет 14,7, или же кислород-топливо 3,4. На деле же обычно максимальная мощность достигается примерно при 12,6…13,6 воздуха к топливу, а минимальный расход при 15.

Пусть мы решили пойти по сохранению стехиометрии и пишем свои топливные карты по AFR = 14,7.
Тогда за два оборота мы должны подать:
При давлении в коллекторе 0,3 бара — 0,161 г кислорода / 3,4 = 0,047 г топлива
При давлении в коллекторе 0,9 бар — 0,462 г кислорода / 3,4 = 0,135 г топлива.

Если наш двигатель четырехцилиндровый, то мы должны подавать одной форсункой при последовательном впрыске в 4 раза меньше:
При давлении в коллекторе 0,3 бара — 0,047 г /4 = 0,0117 г топлива
При давлении в коллекторе 0,9 бар — 0,135 г / 4 = 0,0337 г топлива

Если двигатель вращается с максимальной частотой 6000 оборотов/мин, то один оборот происходит за 0,00016 минуты. Такт впуска ещё меньше в два раза, т.е. 0,00008 минуты. За этот период мы должны успеть подать 0,0117 грамм топлива (считаем, что отстроена система впуска так, что разрежение уже 0,3 бара и больше крутить нет смысла). Тогда нам потребуется форсунка с производительностью:

Читайте также:  Топ лучших дешевых наушников

0,0117 г / 0,00008 минуты = 146,25 г/мин при номинальном давлении топливной рейки.

Зная, какая производительность у нашего инжектора, можно заполнять таблицу зависимости времени открытия форсунок от двух параметров: оборотов и нагрузки. Получается такая трехмерная картинка, которую интересующиеся люди видели не раз.

На деле же не все таблицы рассчитываются так, как нам тут могло тут показаться. Дело в том, что чаще всего вот эту разницу между значениями 0,3 и 0,9 бар обеспечивает вакуумный регулятор давления в топливной рейке, а таблицы строятся с пониманием того, какую коррекцию по давлению, а значит и производительности, вносит регулятор давления топливной рейки. Условно говоря, если регулятор обеспечивает изменение производительности форсунки линейно изменению давления, то тогда в самом простом случае можно составить таблицу только зависимости от оборотов, сохраняя в каждом случае соотношение воздух-топливо 14,7. Опять же, даже в случае с таким идеальным регулятором давления на практике строится трехмерная таблица, потому что форсунки имеют некоторые задержки от начала открытия до подачи топлива (лаг форсунки) и при возрастании нагрузки (уменьшении разрежения) обычно всё-таки отходят от базовых 14,7 и начинают активнее лить, чтобы повысить мощность, тем самым улучшив динамические показатели.

Буду заканчивать на сегодня, ибо устал уже писать. Постарался передать информацию максимально доступно. Да, мы, конечно, ещё так и не запустили двигатель, а просто смыли масляную плёнку с поршней, при этом разбавив масло бензином, ибо искру мы так и не подали, а льём и льём в цилиндры, но и этот объем информации потребует некоторого времени у вас на осмысление.

В заключение скажу, что алгоритм оценки поступления воздуха не всегда основывается на разрежении, как в карбюраторных системах и системах с MAP-сенсором, очень неплохо используются датчики массового (MAF) и реже объемного расхода воздуха (VAF, в простонародии — лопата). Кому интересно, может прочитать про них и, если желает, поделиться ссылкой здесь для остальных.

Тяга — снижение давления воздуха или продуктов сгорания в каналах сооружений и технических систем, способствующее притоку среды в область пониженного давления. Может быть естественной (под действием Архимедовой силы) либо принудительной (под действием технических устройств, обеспечивающих отток газов или воздуха, например, вентиляторов).

Содержание

Естественная тяга [ править | править код ]

Механизм [ править | править код ]

Плотность ρ <displaystyle
ho > нагретого воздуха и любого другого газа меньше, чем плотность более холодного, следовательно, давление столба высотой h (p = ρgh) у него меньше. Этот факт приводит к появлению разности давлений внутри и снаружи дымовой трубы или отапливаемого здания; наибольшее разрежение достигается снизу, где высота вышележащих столбов с разной плотностью максимальна: Δ p = ρ g Δ h <displaystyle Delta p=
ho gDelta h> .

В системе вентиляции зданий [ править | править код ]

Если здание не является герметичным, то за счёт этой разницы давлений возникает поток холодного воздуха, направленный внутрь, а тёплый воздух вытесняется (всплывает) и выходит наружу (могут быть предусмотрены специальные вытяжные вентиляционные каналы). Движущая сила тяги определяется перепадом средних высот входа и удаления воздуха. Так обеспечивается работа вытяжной вентиляции с естественным побуждением.

Если летом в здании работают кондиционеры, то происходит обратный эффект — холодный воздух выходит наружу, а тёплый проникает внутрь.

В современных высотных зданиях с замкнутыми внешними контурами эффект тяги может достигать больших масштабов. Поэтому при конструировании таких зданий уделяют внимание борьбе с этим эффектом. Частично это достигается за счёт принудительной вентиляции, частично за счёт встраивания внутренних перегородок. В случае пожара эффект тяги играет большую роль в распространении дыма.

В дымовых трубах [ править | править код ]

Аналогичный процесс протекает в печах и котлах. Воздух поступает в топку под колосник или подаётся на горелки. Там происходит горение, в ходе которого образуются горячие дымовые газы. Поверхностями нагрева котла или стенками печи тепловая энергия от них отбирается, иногда также в них проникает окружающий воздух, но на выходе они всё равно обычно гораздо горячее окружающего воздуха (даже если технически возможно охладить их сильнее, от этого обычно отказываются, чтобы предотвратить выпадение в системе едкого и токсичного конденсата). Дымовая труба по своему первоначальному назначению требуется для создания как можно большего столба нагретых газов, который создаёт довольно значительную тягу (тем не менее многие высокие трубы создавались в основном из экологических соображений, для рассредоточивания продуктов сгорания). Газы эвакуируются через устье трубы, где разрежение (с поправкой на гидравлическое сопротивление выхода) равно нулю. Тем не менее, в тракте сужающейся трубы может (обычно если есть устройства принудительной тяги) возникать и зона с избыточным давлением [1] .

В небольших котлах и печах естественная тяга бывает достаточна для преодоления аэродинамического сопротивления всего газовоздушного тракта, и даже требует ограничения. В плохо отрегулированных системах печного отопления зданий иногда засасывается столько холодного воздуха снаружи, что тепла, выделяемого камином, не хватает даже на его нагрев. Для регулировки тяги применяются шиберы, заслонки, а также несложные автоматические устройства, подающие в газоход воздух при слишком большом разрежении — ограничители тяги.

Тяга может стать и недостаточной, что приводит к плохому горению в топке и выходу продуктов сгорания в помещение (наиболее опасен угарный газ). При естественной тяге с этим ничего нельзя сделать, кроме как прочистить дымоход и облегчить доступ воздуха в помещение, откуда он забирается.

Недостатки [ править | править код ]

Естественная тяга зависит от атмосферных условий: чем выше температура наружного воздуха, тем, как правило, меньше разница плотностей его и газов. Существенно увеличить её напор можно, только значительно увеличив высоту трубы, что конструктивно сложно и дорого, а для паровозов невозможно по транспортным габаритам; чтобы избежать аэродинамических сопротивлений, требуется делать широкие газоходы с малой скоростью газов. При таких скоростях дымоходы могут легко загрязниться золой, что опять же снижает тягу.

Для увеличения тяги без применения механических устройств можно установить на устье трубы или вентиляционного канала дефлектор, преобразующий в разрежение энергию обтекающего его ветра. Он может обеспечить естественную вентиляцию даже без перепада температур. Но когда нет ветра, дефлектор не работает, к тому же установка дефлекторов и зонтов на трубах отопительного оборудования в России была запрещена до 2003 г. [2] . На выходе можно также использовать диффузор. Однако для устройств с высокофорсированным горением экономически оправдано создание принудительной тяги при помощи дымососов.

Принудительная тяга [ править | править код ]

Принудительная тяга в котельных установках побуждается лопастными машинами — дымососами (были отдельные примеры применения и струйных вытяжных устройств). В зданиях принудительная вытяжная вентиляция аналогичным образом обеспечивается вентиляторами. На всасе таких машин создаётся разрежение, которое так или иначе можно регулировать (поворотом направляющих аппаратов, скоростью вращения, (неэффективно) шиберами и т. п.). Разрежение, как правило, падает по мере удаления от машины. Часть тракта котельных установок, близкая (со стороны всаса) к дымососам, может работать под разрежением, а часть со стороны горелок и других дутьевых устройств — под избыточным давлением (под наддувом); котлы-утилизаторы ПГУ всегда оказываются под наддувом.

Для участков газового тракта с давлением выше давления окружающего воздуха (даже на наружной дымовой трубе, чтобы газы не проникали в толщу кирпичной или бетонной конструкции и не разрушали её) требуется газоплотность (герметичность). Технически её трудно достичь, особенно на больших установках, поэтому обычно стараются поставить дымососы достаточной мощности для создания разрежения по всему тракту, начиная от топки; синхронизированная таким образом работа тяговых и дутьевых устройств называется уравновешенной тягой.

Существуют небольшие котлы с дутьевым вентилятором, но без дымососа, если естественной тяги хватает. Дымососы требуют значительного расхода энергии на привод, создают сильный шум, а их лопасти в агрессивной среде быстро приходят в негодность. Снижение шума особенно важно для вытяжных устройств вентиляции, устанавливаемых внутри помещений.

Напор принудительной тяги во всех случаях складывается с напором естественной тяги (если только они сонаправленны).

Расчёт естественной тяги [ править | править код ]

Тяга создаётся за счёт разницы давлений (ΔP) и может быть подсчитана следующим образом. Уравнение даст точное значение для случая воздуха как в трубе так и снаружи трубы высотой h. Если в трубе находится не воздух, а продукты горения, то формула даст только приближённую оценку.

Δ P = C a h ( 1 T o − 1 T i ) <displaystyle Delta P=;C,a;h;<igg (><frac <1>>>-<frac <1>>><igg )>> ,

где (

в единицах СИ):

ΔP = разница давлений, Па C = 0.0342 a = атмосферное давление, Па h = высота трубы, м To = абсолютная внешняя температура, К Ti = абсолютная внутренняя температура, К

Поток воздуха, вызванный тягой [ править | править код ]

Поток воздуха за счёт тяги может быть подсчитан следующим образом. Формула действует с теми же ограничениями.

Ссылка на основную публикацию
Что такое адрес сервера на телефоне
Блог о модемах, роутерах и gpon ont терминалах. Частенько пользователи планшетов и смартфонов на Андроид сталкиваются с тем, что подключившись...
Что значит загрузочная флешка
Что такое загрузочная флешка / 8 способов создать загрузочную флешку Что такое загрузочная флешка / 8 способов создать загрузочную флешку...
Что значит заблокировать сообщение в телефоне
Текстовые сообщения очень удобны – ведь с их помощью вы можете получить информацию от другого абонента даже в тот момент,...
Что такое аккумулятор слайдер
Кроме достоинств, у литий-ионных аккумуляторов имеется немало минусов: Не выносят перезаряда. Подача тока на элемент питания должна быть прекращена, когда...
Adblock detector