Чем заменить дроссель в блоке питания

Чем заменить дроссель в блоке питания

В этой статье, я немного расскажу об основах ремонта компьютерных, импульсных блоков питания стандарта ATX. Это одна из первых моих статей, я написал её примерно 5 лет назад, по этому прошу строго не судить.

Меры предосторожности.
Ремонт импульсных БП, довольно опасное занятие, особенно если неисправность касается горячей части БП. Поэтому делаем всё вдумчиво и аккуратно, без спешки, с соблюдением техники безопасности.

Силовые конденсаторы могут длительное время держать заряд, поэтому не стоит прикасаться к ним голыми руками сразу после отключения питания. Ни в коем случае не стоит прикасаться к плате или радиаторам при подключенном к сети блоке питания.

Для того чтобы избежать фейерверка и сохранить ещё живые элементы следует впаять 100 ватную лампочку вместо предохранителя. Если при включении БП в сеть лампа вспыхивает и гаснет – все нормально, а если при включении лампа зажигается и не гаснет – где-то короткое замыкание.

Проверять блок питания после выполненного ремонта следует вдали от легко воспламеняющихся материалов.

Паяльник, припой, флюс. Рекомендуется паяльная станция с регулировкой мощности или пара паяльников разной мощности. Мощный паяльник понадобиться для выпаивания транзисторов и диодных сборок, которые находятся на радиаторах, а так же трансформаторов и дросселей. Паяльником меньшей мощности паяется разная мелочевка.
Отсос для припоя и (или) оплетка. Служат для удаления припоя.
Отвертка
Бокорезы. Используются для удаления пластиковых хомутов, которыми стянуты провода.
Мультиметр
Пинцет
Лампочка на 100Вт
Очищенный бензин или спирт. Используется для очистки платы от следов пайки.
Устройство БП.

Немного о том, что мы увидим, вскрыв блок питания.

Внутреннее изображение блока питания системы ATX

A – диодный мост, служит для преобразования переменного тока в постоянный

B – силовые конденсаторы, служат для сглаживания входного напряжения

Между B и C – радиатор, на котором расположены силовые ключи

C – импульсный трансформатор, служит для формирования необходимых номиналов напряжения, а также для гальванической развязки

между C и D – радиатор, на котором размещены выпрямительные диоды выходных напряжений

D – дроссель групповой стабилизации (ДГС), служит для сглаживания помех на выходе

E – выходные, фильтрующие, конденсаторы, служат для сглаживания помех на выходе

Распиновка разъема 24 pin и измерение напряжений.

Знание контактов на разъеме ATX нам понадобится для диагностики БП. Прежде чем приступать к ремонту следует проверить напряжение дежурного питания, на рисунке этот контакт отмечен синим цветом +5V SB, обычно это фиолетовый провод. Если дежурка в порядке, то следует проверить наличие сигнала POWER GOOD (+5V), на рисунке этот контакт помечен серым цветом, PW-OK. Power good появляется только после включения БП. Для запуска БП замыкаем зеленый и черный провод, как на картинке. Если PG присутствует, то, скорее всего блок питания уже запустился и следует проверить остальные напряжения. Обратите внимание, что выходные напряжения будут отличаться в зависимости от нагрузки. Так, что если увидите на желтом проводе 13 вольт, не стоит беспокоиться, вполне вероятно, что под нагрузкой они стабилизируются до штатных 12 вольт.

Если у вас проблема в горячей части и требуется измерить там напряжения, то все измерения надо проводить от общей земли, это минус диодного моста или силовых конденсаторов.

Первое, что следует сделать, вскрыть блок питания и произвести визуальный осмотр.

Если БП пыльный вычищаем его. Проверяем, крутится ли вентилятор, если он стоит, то это, скорее всего и является причиной выхода из строя БП. В таком случае следует смотреть на диодные сборки и ДГС. Они наиболее склонны к выходу из строя из- за перегрева.

Далее осматриваем БП на предмет сгоревших элементов, потемневшего от температуры текстолита, вспученных конденсаторов, обугленной изоляции ДГС, оборванных дорожек и проводов.

Перед вскрытием блока питания можно попробовать включить БП, чтобы наверняка определиться с диагнозом. Правильно поставленный диагноз – половина лечения.

БП не запускается, отсутствует напряжение дежурного питания
БП не запускается, но дежурное напряжение присутствует. Нет сигнала PG.
БП уходит в защиту,
БП работает, но воняет.
Завышены или занижены выходные напряжения
Предохранитель.

БП Hiper type R 580W. Сгорел дроссель в выходных цепях

Спустя много лет работы, год назад, были заменены ВСЕ конденсаторы на БП, и вот, на днях в процессе работы он внезапно выключился, потянуло запахом гари. После разборки БП был найден виновник: дроссель L4. Фото дросселя и платы БП во вложениях. Диодные сборки прозвонил, в норме. Вопрос, кто сталкивался с подобным? Какой материал сердечника дросселя? Перемотать его или где купить новый?
**** UPD****
Люди добрые, если у кого есть данный дроссель от сабжа в сборе (с обмотками) от донора, или кто знает диаметры и количество витков провода напишите на почту .

  • 5 комментариев
  • Подробнее
  • 141 просмотр
  • 2 вложения

FSP550-80GLC, выпаян дроссель

В данном БП, со слов владельца — сгорел дроссель и попортился конденсатор рядом с ним (см на картинке) из за слишком прожорливого железа. Ко мне он попал уже с выпаяным дросселем и конденсатором (чел пытался чинить — но видимо не было замены).

  • 9 комментариев
  • Подробнее
  • 1092 просмотра
  • 3 вложения

Занижены-Завышены выходные напряжения китайского БП

После отказа Кулера вылетел (из за перегрева) БП, при вскрытии визуально было видно почерневший дроссель (тот что после шоток идёт) при позвонке оказалась пробита одна пара шоток (которая по центру) пара кондеров взудалась, заменил нерабочие детали с другого блока (на дросселе пришлось домотать одну обмотку). После включения питания: кулер (новый) ожил, но при замере напряжений оказалось вместо (12>13,5) (5>4,6) (3.3>2.6) подключал 6v лампочку к каналу 3,3v просаживалась напруга примерно до 1V. при подключении лампы к каналу 5v блок выключался.

  • 9 комментариев
  • Подробнее
  • 3698 просмотров
  • 1 вложение

В Thermaltake XP550NP 430W занижены 12V, греется дроссель

При включении БП Thermaltake XP550NP 430W дёргались и тут же останавливались вентиляторы компьютера. Разобрал БП, оказалось что сгорел дроссель во вторичке. Поставил похожий по обмоткам и диаметру проводов. Думаю, что такая штука сама по себе за просто так не горит, поэтому прозвонил все транзисторы и диоды в первичке и вторичке (кроме микросхем, потому как не знаю как), внимательно осмотрел все остальные компоненты на предмет изменения цвета, вспученностей и т.д. Ничего не нашёл — всё цело и красиво. Включил — работает. Подсоединил к компьютеру — всё работает.

  • 7 комментариев
  • Подробнее
  • 8125 просмотров

Thermaltake XP550 PP 430W, сгорел дроссель групповой стабилизации

Добрый вечер ! В БП thermaltake xp 550 полностью выгорел дроссель во вторичной части после трансформатора, поменял на похожий — не хочет запускаться, дежурка есть, помогите со схемой и советами, заранее спасибо .

  • 24 комментария
  • 10137 просмотров
Читайте также:  Посмотрите поскорей сколько брошенных вещей

БП DELUXE ATX-400W выгорает дроссель групповой стабилизации (Решено)

всем привет! БП DELUXE ATX-400w P4, такая проблема-на большинстве бп перегревается и обугливаются обмотки выходного дросселя (или трансформатора)12 и 5в,на входе пульсации в норме,выходные напр.тоже в норме,в чем может быть проблема?

  • 7 комментариев
  • 8456 просмотров

Microlab ATX-420W — посажено 3,3в.(решено)

Уже третий БП попадается мне со сгоревшим Дросселем (клиенты грят запахло) по выходным напругам, в частности замыкают обмотки у него между 12 и 5 вольтами.При этом БП при включении дернет вентилятором и все. Ну дроссель снимаю, перематываю обмотки, включаю. БП заводится, все основные напруги в норме кроме 3,3 вольт- идет 1,6.

Такое название в последнее время приходится часто встречать в схемах блоков питания ламповых и не ламповых конструкций. Что это такое? давайте поближе познакомимся с особенностями работы "электронного дросселя" и с часто встречающимися ошибками при его сборке и использовании.

Рисунок 1.

В блоках питания ламповых усилителей в последнее время, радиолюбителями довольно широко используются стабилизаторы напряжения, выполненные на полевом транзисторе. Такие стабилизаторы называют ещё "электронный дроссель", "усилитель ёмкости" и даже "виртуальная батарея".
Будем называть его "электронный дроссель", хотя по сути — это обычный стабилизатор с плавающим опорным напряжением, изменяющимся в зависимости от входного, или активный фильтр с функцией задержки подачи напряжения и ничего общего с обычным дросселем (накопителем энергии) и принципом его работы он не имеет.
"Электронный дроссель" можно собирать и на биполярных транзисторах, такие схемы известны ещё с 60-х годов, но на полевых схема имеет гораздо лучшую эффективность, поэтому будем рассматривать здесь "электронный дроссель" на мощных полевых транзисторах.
Рассмотрим обычную схему, гуляющую по сети. См. рисунок 2.

Рисунок 2.
"Электронный дроссель" на IRF830.

У некоторых радиолюбителей эта схема работает, у некоторых нет, почему? Эта схема имеет свои недостатки, которые сейчас рассмотрим.
Входное напряжение здесь подаётся на С1 через резистор R1 большого сопротивления. Ток стока транзистора практически нулевой и при качественном конденсаторе С1 (с очень маленькой утечкой) он зарядится до уровня напряжения входа, транзистор уйдёт в насыщение и пользы от такого "дросселя" будет мало.
Если конденсатор С1 будет не очень качественный (иметь утечку больше тока заряда R1), то напряжение на затворе транзистора будет меньше входного и схема может работать. Для нормальной работы схемы, напряжение на затворе должно быть меньше входного, минимум на величину пульсаций при номинальном токе нагрузки. Это ещё не учитывается нестабильность напряжения сети.
То есть входное напряжение сначала должно подаваться на делитель напряжения. Этот делитель и определяет разность между входным и выходным напряжением "электронного дросселя". Сделать такой делитель можно, добавив всего одно сопротивление (R3).

Рисунок 3.
"Электронный дроссель" на IRF830. Второй вариант.

На второй схеме ЭД, входное напряжение на конденсатор С1 подаётся с делителя (R1, R3). Коэффициент такого делителя рассчитывается таким образом, что бы разница между входным и выходным напряжением, для обеспечения нормальной работы ЭД, была 20 — 30 вольт. Сопротивление резистора R1 можно уменьшить, что бы компенсировать ток утечки у конденсатора С1, если он попадётся не очень качественный. Для увеличения времени заряда конденсатора (увеличение времени задержки нарастания выходного напряжения), его ёмкость можно увеличить. Время заряда конденсатора определяется величиной R1 и ёмкостью конденсатора, т.е. постоянная времени заряда.Так, как постоянная времени R1, C1 очень большая (десятки секунд), то;
1) Обеспечивается плавное нарастание выходного напряжения.
2) Быстрые изменения и колебания сети не проходят на выход схемы.
3) Очень качественная фильтрация напряжения, так как на затворе транзистора практически отсутствуют пульсации и в виду наличия у полевого транзистора огромнейшего входного сопротивления и весьма большой крутизны характеристики, на выходе имеем пульсации почти такие же как и на RC-фильтре в цепи затвора.
Рассмотрим назначение элементов схемы;
Резистор R2 подобен "антизвоновому" резистору в цепи сетки лампы выходного каскада, и необходим для предотвращения самовозбуждения транзистора. Его величина выбирается в пределах 1 — 10 кОм. Наличие его обязательно. При монтаже, его лучше припаять непосредственно к выводу транзистора (и стабилитрон VD2 тоже).
Стабилитрон VD2 предназначен для защиты транзистора от переходных процессов и статики. Напряжение его стабилизации выбирается в пределах 14 — 18 вольт. В нормальном режиме работы он заперт. Его можно не ставить, если он уже встроен в транзистор (есть транзисторы со встроенным стабилитроном).
Если у транзистора отсутствует встроенный диод между истоком и стоком, то его необходимо поставить. Он защищает транзистор от обратного напряжения, и если (например при выключении питания) входные конденсаторы разрядились (на схеме не показаны), а выходные ещё нет и напряжение на них больше напряжения входного, то открывается этот диод и конденсаторы на выходе, подключаются через диод к входным и к делителю R1, R3.
Диод VD1 необходим для быстрой разрядки конденсатора С1.

Рассмотрим некоторые особенности монтажа подобных схем.
Транзистор желательно применять в изолированном корпусе. Если корпус транзистора не изолирован, то на радиатор он крепится через изолирующую прокладку (например слюда), а корпус радиатора заземляется.
Антизвоновый резистор и защитный стабилитрон лучше распаять непосредственно на выводах транзистора.
Наличие в схеме "электронного дросселя" не отменяет необходимость в установке конденсаторов после него,которые играют роль источника энергии для быстрых импульсов тока потребления нагрузкой и уменьшают выходное сопротивление источника питания.
"Электронный дроссель", в отличии от обычного дросселя, не является накопителем энергии, и соответственно не применим (как замена обычному дросселю) в схемах выпрямителей с L-фильтром там, где дроссель отдаёт накопленную энергию.

Хотя бытуют различные мнения у противников "транзисторизации" ламповых схем, вплоть до замены индикаторов на светодиодах — неоновыми лампочками (хотя попадаются неонки с очень большим уровнем шума), скажу однозначно — применение в блоке питания лампового усилителя "электронного дросселя", нисколько не ухудшает его звучание, а в некоторых случаях гораздо его улучшает, позволяя при этом сэкономить габариты и вес любительских конструкций.

Следует отметить, что статья старая, но, тем не менее, информация будет полезна для изучения вопроса.

Выше на рисунке приведена несколько упрощенная блок-схема типичного компьютерного блока питания. На примере блока Macropower MP-300AR показано типичное расположение компонентов в реальном блоке питания.

Читайте также:  Премьеры недели в кино

Питающее напряжение 220В проходит через двух- или трехзвенный фильтр, защищающий другие включенные в сеть устройства от создаваемых блоком питания помех. После фильтра напряжение поступает на выпрямитель D1, а с него – на схему коррекции фактора мощности (PFC – Power Factor Correction).

После схемы коррекции фактора мощности (или, в случае отсутствия таковой, напрямую с диодного моста) выпрямленное напряжение поступает на сглаживающие конденсаторы C1 и C2, а с них – на ключ (обычно он представляет собой два транзистора), управляющий силовым трансформатором T1. Типичная частота работы ключа в компьютерном блоке питания – 30-35 кГц.

Так как блок питания имеет до шести выходных напряжений (+12В, +5В, +3,3В, -5В, -12В и +5В дежурного режима), то в идеале необходимо реализовать шесть стабилизаторов. На практике же расположить в ограниченном объеме блока питания даже два раздельных мощных стабилизатора (скажем, для +5В и +3,3В), при этом, не подняв его стоимость в область астрономических величин, практически невозможно. Поэтому во всех современных блоках используется лишь один импульсный стабилизатор (на самом деле, вообще говоря, два – источник +5В дежурного режима представляет из себя совершенно независимый маломощный стабилизатор, но благодаря малой мощности (всего 10 Вт), его реализация особой сложности не представляет).

Итак, все выходные напряжения, кроме +5В дежурного режима, снимаются с одного и того же трансформатора T1 (на блок-схеме для простоты показаны только два напряжения). Отмечу, что во всех современных блоках при управлении ключами используется не частотная модуляция (когда, как я мимоходом говорил выше, меняется частота переключения ключей), а широтно-импульсная, когда при неизменной частоте следования импульсов меняется их ширина. Чем больше ширина импульса, тем больше энергии закачивается в трансформатор за каждый период, и тем больше напряжение на его выходе.

Однако, если просто снимать сигнал обратной связи с одного из выходных напряжений, то блок будет стабилизировать только его. Например, пусть это будет +5В. Тогда при росте нагрузки на +5В напряжение на этом выходе начнет проседать, ШИМ-контроллер увеличит ширину импульсов, вытягивая его обратно на заданный уровень. и все остальные напряжения также пойдут вверх. Для борьбы с этим эффектом используется сразу несколько решений.

Во-первых, сигнал обратной связи снимается сразу с двух наиболее нагруженных выходных линий – с +12В и +5В, через резисторный делитель. Таким образом, качество стабилизации каждого из напряжений по отдельности ухудшается, однако стабилизатор блока питания реагирует на изменение нагрузки не по одному, а сразу по двум напряжениям – и в результате блок питания нормально работает при различных распределениях нагрузки между этими двумя шинами.

Во-вторых, третья сильноточная шина, +3,3В, в большинстве блоков питания имеет собственный вспомогательный стабилизатор – так называемую схему на насыщаемом дросселе (также встречаются названия "магнитный стабилизатор" и "магнитный усилитель"). Стабилизаторы на насыщаемом дросселе отличаются достаточно высоким КПД и при этом сравнительно неплохим коэффициентом стабилизации, являясь разновидностью импульсных. Напряжение +3,3В получается с тех же обмоток трансформатора, что и +5В. Впрочем, встречаются и блоки питания, в которых производитель пожелал сэкономить на вспомогательном стабилизаторе, намотав на силовом трансформаторе отдельную обмотку под напряжение 3,3В. Так как обратная связь на стабилизатор с этого напряжения не заводится, то его стабильность в таких блоках оставляет желать лучшего.

В-третьих, слаботочные шины, то есть -12В и -5В, иногда снабжают обычными линейными стабилизаторами – благодаря маленьким токам нагрузки по этим шинам невысокий КПД таких стабилизаторов в общий КПД блока питания вклада почти не вносит. Впрочем, так чаще стабилизируется только -5В – ради экономии на обмотках трансформатора оно получается из -12В с помощью линейного стабилизатора, а так как в современных блоках питания это напряжение уже не требуется, то и линейные стабилизаторы из блоков исчезли совсем.

И, наконец, в четвертых, все выходные напряжения проходят через разные обмотки так называемого дросселя групповой стабилизации L1. Допустим, увеличилось потребление по +5В, ШИМ-стабилизатор отреагировал на это увеличением ширины импульсов, напряжение +5В вернулось в норму, но остальные напряжения, нагрузка по которым не увеличилась, слегка подросли – хоть для них и применяются описанные выше дополнительные меры по стабилизации, все же основное внимание уделяется напряжению +5В. Однако дроссель групповой стабилизации сконструирован так, что при увеличении тока через одну из обмоток напряжение, наведенное этим током в остальных обмотках, вычитается из соответствующих выходных напряжений. Поэтому в рассматриваемом случае за счет увеличившегося тока через обмотку, соответствующую +5В, в обмотках, соответствующих +12В и +3,3В, возникнут отрицательные напряжения – и эти напряжения увеличатся не так сильно, как увеличились бы в отсутствие дросселя групповой стабилизации.

Все эти меры приводят к тому, что блок обеспечивает не столь идеальную, как было бы в случае раздельных стабилизаторов на каждое напряжение, но в общем и целом приемлемую для работы в широком диапазоне нагрузок стабилизацию всех выходных напряжений. Однако назвать ее более чем "приемлемой" не удается, и отсюда проистекает одна из распространенных проблем блоков питания – проблема перекоса выходных напряжений. Если нагрузка блока питания распределяется по его шинам менее равномерно, чем предполагали его разработчики (например, система потребляет большой ток по +5В и маленький по +12В, что характерно для многих систем на старших процессорах Athlon XP), то стабилизатору не удается удержать все напряжения в заданных рамках – и более нагруженные шины изрядно проседают, в то время как на слабо нагруженных напряжения наоборот оказываются завышенными. Отсюда же проистекает и невозможность раздельной регулировки выходных напряжений блока питания – их соотношение жестко задано параметрами силового трансформатора и дросселя групповой стабилизации, а регулировками ШИМ можно лишь поднять или опустить их все одновременно.

В последнее время в дорогих блоках питания – например, производства OCZ или Antec – стал встречаться интересный вариант решения этой проблемы: вспомогательные стабилизаторы на насыщаемых дросселях устанавливаются не только на шину +3,3В, но также и на +12В и +5В. Это позволяет не только достичь очень хорошего (по меркам компьютерных блоков питания) коэффициента стабилизации всех выходных напряжений, но и при необходимости регулировать каждое из напряжений независимо от остальных, меняя параметры его собственного вспомогательного стабилизатора. Впрочем, я вынужден еще раз отметить, что такая конструкция – пока что прерогатива лишь наиболее дорогих блоков питания, а для блоков средней ценовой категории зависимость всех выходных напряжений от нагрузки на каждую из шин является неотъемлемой чертой.

Читайте также:  Какие терминалы принимают оплату телефоном

После дросселя групповой стабилизации на выходе блока питания стоят электролитические конденсаторы большой емкости (C3. C6 по приведенной выше схеме) и фильтрующие дроссели – и те, и другие призваны сглаживать пульсации выходного напряжения на частоте работы ШИМ-стабилизатора и, соответственно, силового трансформатора. Несмотря на наличие дросселя групповой стабилизации, раздельные дроссели все же необходимы – благодаря маленьким габаритам и, соответственно, маленькой паразитной емкости они хорошо подавляют высокочастотные помехи, которые дроссель групповой стабилизации, имеющий довольно паразитную емкость, пропускает.

Таким образом, двумя неотъемлемыми проблемами любого компьютерного блока питания являются зависимость каждого из выходных напряжений от нагрузки не только на соответствующую ему шину, но и на все остальные шины, а также наличие на выходе блока пульсаций с удвоенной частотой работы ШИМ-стабилизатора, то есть, обычно, около 60 кГц.

К этому, разумеется, производители блоков питания – как правило, нижней ценовой категории – добавляют свои собственные "особенности", перечислять которые можно долго. В первую очередь страдают номиналы деталей – так, в качестве диодных сборок на выходе силового трансформатора могут устанавливаться не только сборки, рассчитанные на ток меньше указанного на этикетке блока, но даже дискретные слаботочные диоды, максимальный ток через которые составляет всего 3. 5А. Это зачастую приводит к тому, что при работе под полной нагрузкой блок питания просто выходит из строя в течение нескольких минут, тем более что обычно производитель заодно экономит и на размере радиаторов, на которые эти диоды устанавливаются.

Точно так же страдают и номиналы конденсаторов, и это тоже сказывается на работе блока питания при большой нагрузке – уменьшение емкостей входных конденсаторов приводит к ухудшению реакции блока на небольшие провалы входного напряжения, уменьшение емкости выходных – к увеличению размаха пульсаций на выходе блока питания.

Одновременно с уменьшением номиналов деталей внутри блока проявляются и внешние признаки удешевления – уменьшается количество выходных разъемов блока, а провода, на которых они расположены, уменьшаются в сечении с положенных 18 AWG до 20 AWG (чем больше цифра в системе маркировки AWG – тем меньше сечение провода). Последнее приводит к увеличению падения напряжения на проводах – и, следовательно, увеличению пульсаций напряжения непосредственно на разъемах питания потребителей, а также, в случае большой нагрузки, даже к заметному нагреву проводов.

До последнего держатся фильтрующие дроссели – уменьшение их размеров не дает серьезной экономии в цене, поэтому до тех пор, пока производитель не посчитает их вообще лишними, дроссели в блоке присутствуют. Замена же их на перемычки приводит к увеличению уровня пульсаций на выходе блока питания (если это были выходные дроссели) или же к увеличению уровня помех, выдаваемых блоком питания в сеть 220В (если это были дроссели входного фильтра).

Одним же из наиболее запомнившихся пользователям методов удешевления блоков питания нижнего ценового диапазона, вне всякого сомнения, стало исполнение источника дежурного питания +5В в виде блокинг-генератора с электролитическим конденсатором в цепи обратной связи. В такой схеме, представляющей собой импульсный источник питания на базе блокинг-генератора, выходное напряжение определяется частотой импульсов, а она, в свою очередь, обратно пропорциональна емкости конденсатора в цепи обратной связи. Использование же дешевых конденсаторов, рассчитанных на работу при температуре до 85 градусов, плюс очень тяжелый температурный режим работы "дежурки" (она работает непрерывно, в то время как охлаждающий блок питания вентилятор – только когда компьютер включен), характерный для наиболее дешевых блоков питания, приводили к тому, что примерно через полтора года эксплуатации БП конденсатор начинал высыхать, а емкость его – соответственно, уменьшаться. Одновременно с уменьшением емкости начинало расти выходное напряжение дежурного источника, а так как от него запитывается основной стабилизатор блока питания, то в один прекрасный момент это приводило к выходу основного стабилизатора из строя в момент включения компьютера, причем выход этот сопровождался выдачей по всем шинам питания завышенных в два-три раза напряжений. Разумеется, компьютер после такого фактически полностью выгорал, вплоть до визуально обнаруживаемого прогорания микросхем на материнской плате, в винчестере и так далее. Некоторые шансы сохранялись разве что у процессора и памяти – если выдерживали их собственные стабилизаторы, расположенные на материнской плате.

Конечно, со временем производители одумались и стали устанавливать в "дежурку" практически вечные пленочные конденсаторы вместо электролитических, благо емкость там требовалась небольшая – однако к этому моменту было выпущено уже достаточное количество таких "бомб замедленного действия", чтобы служить очень серьезным аргументом в пользу покупки более дорогих и качественных блоков питания, в которых столь сомнительные схемотехнические решения не применялись.

Новости Высоких Технологий

Катушка индуктивности, дроссель — электронный компонент. Предназначение, зачем нужен, где используется.

Катушка индуктивности (inductor. -eng)– устройство, основным компонентом которого является проводник скрученный в кольца или обвивающий сердечник. При прохождении тока, вокруг скрученного проводника (катушки), образуется магнитное поле (она может концентрировать переменное магнитное поле), что и используется в радио- и электро- технике.

К точной и компьютерной технике технике больше близок дроссель ( Drossel , регулятор, ограничитель), так как он чаще всего применяется в цепях питания процессоров, видеокарт, материнских плат, блоков питания & etc . В последнее время, применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки.

Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало. Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан. Особенно эффективными считаются дроссели с ферритовыми сердечниками (а также из альсифера, карбонильного железа, магнетита) с большой магнитной проницаемостью.

Используется в выпрямителях, сетевых фильтрах, радиотехнике, питающих фазах высокоточной аппаратуры и другой технике требующей стабильного и «правильного» питания. Многослойная катушка может выступать и в качестве простейшего конденсатора, так как имеет собственную ёмкость. Правда, от данного эффекта пытаются больше избавиться, чем его усиливать и он считается паразитным.

Ссылка на основную публикацию
Хорошие дешевые жесткие диски
Лучший жесткий диск далек от SSD в плане скорости передачи данных, однако есть причина, по которой данные устройства все еще...
Формат записи видео mov
MOV против MP4 Существует много форматов файлов, которые можно использовать для хранения ваших видео в зависимости от ваших потребностей. MOV...
Формат ммгг как писать
Сбербанк Онлайн позволяет проводить различные платежи прямо из дома с любого устройства, имеющего доступ в Интернет. Это существенно экономит время...
Хорошие ноутбуки за 20000 для игр
Если вам необходим хороший ноутбук для работы, то вам придется потратится как минимум 20 тысяч рублей. За эти деньги вы...
Adblock detector